论文标题

部分可观测时空混沌系统的无模型预测

Plane curves with a large linear automorphism group in characteristic $p$

论文作者

Borges, H., Korchmáros, G., Speziali, P.

论文摘要

令$ g $为三维投影组的子组$ \ mathrm {pgl}(3,q)$在有限字段$ \ mathbb {f} _q $ q $的有限字段定义,被视为$ \ mathrm {pglm {pgl}(3,k)$ k $的子组$ \ mathbb {f} _q $。对于七个非孢子,最大亚组$ g $ of $ \ mathrm {pgl}(3,q)$,我们调查了定义在$ g $不变的$ k $上定义的(投影,不可约)的平面曲线。对于每一个,我们计算$ g $ invariant曲线的最低度$ d(g)$,提供所有$ g $ - invariant曲线的分类,并确定所有$ g $ g $ invariant curves的频谱中的第一个差距$ \ varepsilon(g)$。我们表明,除非由$ g $唯一确定,否则学位$ d(g)$的曲线属于铅笔。我们还指出,$ g $ invariant $ d(g)$具有特定的几何特征,例如frobenius nonclassicality和$ \ mathbb {f} _ {q^i} $的异常变化。对于大多数平面曲线的示例,由$ \ mathrm {pgl}(3,q)$的大型子组留下,整个曲线的整个自动形态组是线性的,即$ \ mathrm {pgl}(pgl}(3,k)$的子组。尽管这似乎是一种普遍的行为,但我们表明,对于某些不可还原平面曲线也可能发生相反的情况,也就是说,曲线具有大量的线性自动形态,但其完整的自动形态组是非线性的。

Let $G$ be a subgroup of the three dimensional projective group $\mathrm{PGL}(3,q)$ defined over a finite field $\mathbb{F}_q$ of order $q$, viewed as a subgroup of $\mathrm{PGL}(3,K)$ where $K$ is an algebraic closure of $\mathbb{F}_q$. For the seven nonsporadic, maximal subgroups $G$ of $\mathrm{PGL}(3,q)$, we investigate the (projective, irreducible) plane curves defined over $K$ that are left invariant by $G$. For each, we compute the minimum degree $d(G)$ of $G$-invariant curves, provide a classification of all $G$-invariant curves of degree $d(G)$, and determine the first gap $\varepsilon(G)$ in the spectrum of the degrees of all $G$-invariant curves. We show that the curves of degree $d(G)$ belong to a pencil depending on $G$, unless they are uniquely determined by $G$. We also point out that $G$-invariant curves of degree $d(G)$ have particular geometric features such as Frobenius nonclassicality and an unusual variation of the number of $\mathbb{F}_{q^i}$-rational points. For most examples of plane curves left invariant by a large subgroup of $\mathrm{PGL}(3,q)$, the whole automorphism group of the curve is linear, i.e., a subgroup of $\mathrm{PGL}(3,K)$. Although this appears to be a general behavior, we show that the opposite case can also occur for some irreducible plane curves, that is, the curve has a large group of linear automorphisms, but its full automorphism group is nonlinear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源