论文标题
微小的对象跟踪:大规模数据集和基线
Tiny Object Tracking: A Large-scale Dataset and A Baseline
论文作者
论文摘要
经常出现在实际应用中的微小物体的外观和特征较弱,并且在卑鄙的视觉任务(例如对象检测和分割)中获得了越来越多的兴趣。为了促进微小对象跟踪的研究和开发,我们创建了一个大型视频数据集,该数据集包含434个序列,总计超过217K帧。每个框架都用高质量的边界框仔细注释。在数据创建中,我们考虑了12个挑战属性,以涵盖广泛的观点和场景复杂性,并注释这些属性以促进基于属性的性能分析。为了在微小的对象跟踪中提供强大的基线,我们提出了一种新颖的多层次知识蒸馏网络(MKDNET),该网络在统一框架中追求三级知识蒸馏,以有效增强特征表示,歧视和本地化能力,以跟踪微小的对象。在拟议的数据集上进行了广泛的实验,结果证明了MKDNET与最新方法相比的优势和有效性。数据集,算法代码和评估代码可在https://github.com/mmic-lcl/datasets-and-benchmark-code上获得。
Tiny objects, frequently appearing in practical applications, have weak appearance and features, and receive increasing interests in meany vision tasks, such as object detection and segmentation. To promote the research and development of tiny object tracking, we create a large-scale video dataset, which contains 434 sequences with a total of more than 217K frames. Each frame is carefully annotated with a high-quality bounding box. In data creation, we take 12 challenge attributes into account to cover a broad range of viewpoints and scene complexities, and annotate these attributes for facilitating the attribute-based performance analysis. To provide a strong baseline in tiny object tracking, we propose a novel Multilevel Knowledge Distillation Network (MKDNet), which pursues three-level knowledge distillations in a unified framework to effectively enhance the feature representation, discrimination and localization abilities in tracking tiny objects. Extensive experiments are performed on the proposed dataset, and the results prove the superiority and effectiveness of MKDNet compared with state-of-the-art methods. The dataset, the algorithm code, and the evaluation code are available at https://github.com/mmic-lcl/Datasets-and-benchmark-code.