论文标题

从无监督到少数图形异常检测:一种多尺度的对比学习方法

From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach

论文作者

Zheng, Yu, Jin, Ming, Liu, Yixin, Chi, Lianhua, Phan, Khoa T., Chen, Yi-Ping Phoebe

论文摘要

在许多应用程序(例如社交网络,金融和电子商务)中,从图形数据中检测是一项重要的数据挖掘任务。图形异常检测中的现有努力通常仅在单个比例(视图)中考虑信息,因此不可避免地限制了它们在复杂图数据中捕获异常模式中的能力。为了解决这一限制,我们提出了一个新型框架,图形异常检测框架具有多尺度的对比度学习(简而言之的是Anemone)。通过使用图形神经网络作为骨干来编码来自多个图形量表(视图)的信息,我们将学习图中节点的更好表示。在同时同时在贴片和上下文级别上最大化实例之间的协议时,我们根据多个角度根据一致性的程度来估计每个节点的异常得分,并根据统计异常估计量。为了进一步利用可能在现实生活应用中收集的少数基础真相异常(几乎没有射击异常),我们进一步提出了一种扩展的算法Amone-FS,以将有价值的信息整合在我们的方法中。我们在纯粹无监督的设置和几乎没有射击的异常检测设置下进行了大量实验,我们证明了所提出的方法的侵蚀剂及其变体Agemone-fs在六个基准数据集中始终优于最先进的算法。

Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce. Existing efforts in graph anomaly detection typically only consider the information in a single scale (view), thus inevitably limiting their capability in capturing anomalous patterns in complex graph data. To address this limitation, we propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short). By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph. In maximizing the agreements between instances at both the patch and context levels concurrently, we estimate the anomaly score of each node with a statistical anomaly estimator according to the degree of agreement from multiple perspectives. To further exploit a handful of ground-truth anomalies (few-shot anomalies) that may be collected in real-life applications, we further propose an extended algorithm, ANEMONE-FS, to integrate valuable information in our method. We conduct extensive experiments under purely unsupervised settings and few-shot anomaly detection settings, and we demonstrate that the proposed method ANEMONE and its variant ANEMONE-FS consistently outperform state-of-the-art algorithms on six benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源