论文标题

解析:半监督的脑电图学习中的表示形式对情绪识别

PARSE: Pairwise Alignment of Representations in Semi-Supervised EEG Learning for Emotion Recognition

论文作者

Zhang, Guangyi, Davoodnia, Vandad, Etemad, Ali

论文摘要

我们提出了Parse,这是一种新颖的半监督结构,用于学习强大的脑电图表现以识别情感。为了减少大量未标记数据与标记数据有限的潜在分布不匹配,Parse使用成对表示对准。首先,我们的模型执行数据增强,然后对大量原始和增强未标记的数据进行标签猜测。然后将其锐化的标签和标记数据的凸组合锐化。最后,进行表示对准和情感分类。为了严格测试我们的模型,我们将解析与我们实施并适应脑电图学习的几种最先进的半监督方法进行了比较。我们对四个基于公共EEG的情绪识别数据集,种子,种子IV,种子V和Amigos(价和唤醒)进行了这些实验。实验表明,我们提出的框架在种子,种子-IV和Amigos(Valence)中的标记样品有限的情况下,取得了总体最佳效果,同时接近总体最佳结果(在种子V和Amigos中达到第二好的)。分析表明,我们的成对表示对准可以通过降低未标记和标记数据之间的分布比对来大大提高性能,尤其是当每个类别只有1个样本时。

We propose PARSE, a novel semi-supervised architecture for learning strong EEG representations for emotion recognition. To reduce the potential distribution mismatch between the large amounts of unlabeled data and the limited amount of labeled data, PARSE uses pairwise representation alignment. First, our model performs data augmentation followed by label guessing for large amounts of original and augmented unlabeled data. This is then followed by sharpening of the guessed labels and convex combinations of the unlabeled and labeled data. Finally, representation alignment and emotion classification are performed. To rigorously test our model, we compare PARSE to several state-of-the-art semi-supervised approaches which we implement and adapt for EEG learning. We perform these experiments on four public EEG-based emotion recognition datasets, SEED, SEED-IV, SEED-V and AMIGOS (valence and arousal). The experiments show that our proposed framework achieves the overall best results with varying amounts of limited labeled samples in SEED, SEED-IV and AMIGOS (valence), while approaching the overall best result (reaching the second-best) in SEED-V and AMIGOS (arousal). The analysis shows that our pairwise representation alignment considerably improves the performance by reducing the distribution alignment between unlabeled and labeled data, especially when only 1 sample per class is labeled.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源