论文标题

学习人行道轨迹预测的行人车辆相互作用

Learning the Pedestrian-Vehicle Interaction for Pedestrian Trajectory Prediction

论文作者

Zhang, Chi, Berger, Christian

论文摘要

在本文中,我们研究了行人与车辆之间的相互作用,并提出了一种新型的神经网络结构,称为行人车辆相互作用(PVI)提取器,用于学习行人车辆的相互作用。我们在两种顺序方法(长期短期记忆(LSTM)模型)和非序列方法(卷积模型)上实施了建议的PVI提取器。我们使用Waymo打开的数据集,该数据集包含带有行人和车辆注释的真实世界城市交通场景。对于基于LSTM的模型,我们提出的模型与Social-LSTM和Social-Gan进行了比较,使用我们建议的PVI提取器将平均位移误差(ADE)和最终位移误差(FDE)降低了7.46%和5.24%。对于基于卷积的模型,我们提出的模型与社交-STGCNN和Social-IWSTCNN进行了比较,并且使用我们提出的PVI提取器将ADE和FDE降低了2.10%和1.27%。结果表明,行人车的相互作用会影响行人行为,使用拟议的PVI提取器的模型可以捕获行人与车辆之间的相互作用,从而优于比较方法。

In this paper, we study the interaction between pedestrians and vehicles and propose a novel neural network structure called the Pedestrian-Vehicle Interaction (PVI) extractor for learning the pedestrian-vehicle interaction. We implement the proposed PVI extractor on both sequential approaches (long short-term memory (LSTM) models) and non-sequential approaches (convolutional models). We use the Waymo Open Dataset that contains real-world urban traffic scenes with both pedestrian and vehicle annotations. For the LSTM-based models, our proposed model is compared with Social-LSTM and Social-GAN, and using our proposed PVI extractor reduces the average displacement error (ADE) and the final displacement error (FDE) by 7.46% and 5.24%, respectively. For the convolutional-based models, our proposed model is compared with Social-STGCNN and Social-IWSTCNN, and using our proposed PVI extractor reduces the ADE and FDE by 2.10% and 1.27%, respectively. The results show that the pedestrian-vehicle interaction influences pedestrian behavior, and the models using the proposed PVI extractor can capture the interaction between pedestrians and vehicles, and thereby outperform the compared methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源