论文标题

关于尺寸四的unitriangular矩阵的身份问题

On the Identity Problem for Unitriangular Matrices of Dimension Four

论文作者

Dong, Ruiwen

论文摘要

我们表明,对于该组$ \ MATHSF {ut}的有限生成的子序列的多项式时间是可决定的(4,\ Mathbb {Z})$ $ 4 \ times 4 $ unitriangular Integer矩阵。作为我们证明的副产品,我们还显示了$ \ Mathsf {ut}(4,\ Mathbb {z})$中几个子集问题问题的多项式时间可确定性。

We show that the Identity Problem is decidable in polynomial time for finitely generated sub-semigroups of the group $\mathsf{UT}(4, \mathbb{Z})$ of $4 \times 4$ unitriangular integer matrices. As a byproduct of our proof, we also show the polynomial-time decidability of several subset reachability problems in $\mathsf{UT}(4, \mathbb{Z})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源