论文标题
关于尺寸四的unitriangular矩阵的身份问题
On the Identity Problem for Unitriangular Matrices of Dimension Four
论文作者
论文摘要
我们表明,对于该组$ \ MATHSF {ut}的有限生成的子序列的多项式时间是可决定的(4,\ Mathbb {Z})$ $ 4 \ times 4 $ unitriangular Integer矩阵。作为我们证明的副产品,我们还显示了$ \ Mathsf {ut}(4,\ Mathbb {z})$中几个子集问题问题的多项式时间可确定性。
We show that the Identity Problem is decidable in polynomial time for finitely generated sub-semigroups of the group $\mathsf{UT}(4, \mathbb{Z})$ of $4 \times 4$ unitriangular integer matrices. As a byproduct of our proof, we also show the polynomial-time decidability of several subset reachability problems in $\mathsf{UT}(4, \mathbb{Z})$.