论文标题

基于机器学习的城市峡谷路径损失预测,使用28 GHz曼哈顿测量

Machine Learning-based Urban Canyon Path Loss Prediction using 28 GHz Manhattan Measurements

论文作者

Gupta, Ankit, Du, Jinfeng, Chizhik, Dmitry, Valenzuela, Reinaldo A., Sellathurai, Mathini

论文摘要

MM波的大带宽对于5G及以后至关重要,但是高路径损耗(PL)需要高度准确的PL预测,以进行网络计划和优化。具有坡度截距拟合的统计模型在捕获城市峡谷中看到的巨大变化方面的差异很短,而射线追踪(能够表征特定地点的特征),在描述叶子和街道混乱和相关的反射/衍射射线计算方面面临挑战。机器学习(ML)很有希望,但面临PL预测的三个主要挑战:1)测量数据不足; 2)缺乏向新街道推断; 3)绝大多数复杂的功能/模型。我们提出了一个基于ML的Urban Canyon PL预测模型,该模型基于曼哈顿的28个GHz测量值,在该模型中,通过LIDAR POINT CLOIN DATASET和建筑物通过网格网格建筑物数据集对街道剪裁进行建模。我们从点云中提取专家知识驱动的街道混乱功能,并使用卷积AutoEncoder积极压缩3D构建信息。 Using a new street-by-street training and testing procedure to improve generalizability, the proposed model using both clutter and building features achieves a prediction error (RMSE) of $4.8 \pm 1.1$ dB compared to $10.6 \pm 4.4$ dB and $6.5 \pm 2.0$ dB for 3GPP LOS and slope-in​​tercept prediction, respectively, where the standard deviation indicates street-by-street variation.仅使用四个最具影响力的混乱功能,可以实现$ 5.5 \ pm 1.1 $ dB的RMSE。

Large bandwidth at mm-wave is crucial for 5G and beyond but the high path loss (PL) requires highly accurate PL prediction for network planning and optimization. Statistical models with slope-intercept fit fall short in capturing large variations seen in urban canyons, whereas ray-tracing, capable of characterizing site-specific features, faces challenges in describing foliage and street clutter and associated reflection/diffraction ray calculation. Machine learning (ML) is promising but faces three key challenges in PL prediction: 1) insufficient measurement data; 2) lack of extrapolation to new streets; 3) overwhelmingly complex features/models. We propose an ML-based urban canyon PL prediction model based on extensive 28 GHz measurements from Manhattan where street clutters are modeled via a LiDAR point cloud dataset and buildings by a mesh-grid building dataset. We extract expert knowledge-driven street clutter features from the point cloud and aggressively compress 3D-building information using convolutional-autoencoder. Using a new street-by-street training and testing procedure to improve generalizability, the proposed model using both clutter and building features achieves a prediction error (RMSE) of $4.8 \pm 1.1$ dB compared to $10.6 \pm 4.4$ dB and $6.5 \pm 2.0$ dB for 3GPP LOS and slope-intercept prediction, respectively, where the standard deviation indicates street-by-street variation. By only using four most influential clutter features, RMSE of $5.5\pm 1.1$ dB is achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源