论文标题
Seifert歧管的两个属的Heegaard分裂的Goeritz组,其基础Orbifold是球体,具有三个特殊复杂系数的特殊点
The Goeritz group of a Heegaard splitting of genus two of a Seifert manifold whose base orbifold is sphere with three exceptional points of sufficiently complex coefficients
论文作者
论文摘要
在本文中,我们为Goeritz组添加了示例,Goeritz群组是3个manifolds的Heegaard分裂的映射类组。我们专注于对属属属的海格阿德分裂,其基本的Orbifold是一个带有三个特殊复杂系数的特殊点的球体,其中“足够复杂”意味着每个手术系数p_ {l} q_ {l} a q_ {l} avery q_ {l}每个例外的纤维都不(在手术描述中),q_ n y y y y y y y y y是 +l} is exult y是 +l} is exult +l}。 p_ {l}。
In this paper, we add examples to Goeritz groups, the mapping class groups of given Heegaard splittings of 3-manifolds. We focus on a Heegaard splitting of genus two of a Seifert manifold whose base orbifold is sphere with three exceptional points of sufficiently complex coefficients, where "sufficiently complex" means that every surgery coefficient p_{l} over q_{l} of each exceptional fiber (in a surgery description) satisfies that q_{l} is congruent to neither +1 or -1 modulo p_{l}.