论文标题

Lebesgue感应和Tonelli的定理

Lebesgue Induction and Tonelli's Theorem in Coq

论文作者

Boldo, Sylvie, Clément, François, Martin, Vincent, Mayero, Micaela, Mouhcine, Houda

论文摘要

Lebesgue集成是一种众所周知的数学工具,例如在概率理论,真实分析和数值数学中使用。因此,其在证明助手中的形式化旨在符合不同的目标和项目。一旦正式定义了Lebesgue积分并证明了第一个引理,正式化便利性的问题自然就会出现。要检查它,有用的扩展是Tonelli定理,指出可以通过迭代积分来计算两个变量的非负可测量函数的(双重)积分,并允许切换集成顺序。因此,我们需要在产品空间上定义和证明结果,希望它们可以轻松从单个空间上的现有空间中得出。本文介绍了COQ中的正式定义和证明,$σ$ - 代数,产品指标及其独特性,迭代积分的构建,直到Tonelli定理。我们还宣传\ emph {lebesgue归纳原理}由{\ nonnon -norngative}可测量功能提供的归纳类型提供。

Lebesgue integration is a well-known mathematical tool, used for instance in probability theory, real analysis, and numerical mathematics. Thus its formalization in a proof assistant is to be designed to fit different goals and projects. Once Lebesgue integral is formally defined and the first lemmas are proved, the question of the convenience of the formalization naturally arises. To check it, a useful extension is the Tonelli theorem, stating that the (double) integral of a nonnegative measurable function of two variables can be computed by iterated integrals, and allowing to switch the order of integration. Therefore, we need to define and prove results on product spaces, hoping that they can easily derive from the existing ones on a single space. This article describes the formal definition and proof in Coq of product $σ$-algebras, product measures and their uniqueness, the construction of iterated integrals, up to the Tonelli theorem. We also advertise the \emph{Lebesgue induction principle} provided by an inductive type for {\nonnegative} measurable functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源