论文标题
电离故障II的特性。结构扰动的地震标志
Properties of the ionisation glitch II. Seismic signature of the structural perturbation
论文作者
论文摘要
在本文中,我们旨在限制恒星中电离区域的特性,从该区域的快速结构变化引起的振荡频率变化(所谓的小故障)。特别是,我们试图避免基于恒星模型的校准,从而提供了对这些特性的真正独立估计。这些包括氦丰度和其他物理量,可能会对振荡频率(例如电子退化参数或电离区域的程度)产生重大影响。 作为起点,我们将电离区域的结构扰动应用于波动方程,以进行辐射区域的径向振荡。因此,所产生的故障模型能够利用由氦气离子化引起的快速振荡中所包含的信息,也可以在伴随氢的慢速趋势中。该信息可以直接用与氦丰度,电子变性和电离区域程度相关的参数表示。 使用贝叶斯推断,我们表明可以实质性地恢复毛刺原点处的特性。发现存在氦的丰度和电子退化性之间的堕落性,这特别影响了氦气估计值。将方法扩展到毛刺受到污染(例如表面效应)的情况,我们注意到与氢离子化相关的缓慢小故障趋势的重要性。我们建议使用高斯工艺将频率故障与表面效应相关。
In the present paper, we aim to constrain the properties of the ionisation region in a star from the oscillation frequency variation (a so-called glitch) caused by rapid structural variations in this very region. In particular, we seek to avoid the use of calibration based on stellar models thus providing a truly independent estimate of these properties. These include both the helium abundance and other physical quantities that can have a significant impact on the oscillation frequencies such as the electronic degeneracy parameter or the extent of the ionisation region. Taking as a starting point our first paper, we applied structural perturbations of the ionisation zone to the wave equation for radial oscillations in an isentropic region. The resulting glitch model is thus able to exploit the information contained in the fast frequency oscillation caused by the helium ionisation but also in the slow trend accompanying that of hydrogen. This information can directly be expressed in terms of parameters related respectively to the helium abundance, electronic degeneracy and extent of the ionisation region. Using a Bayesian inference, we show that a substantial recovery of the properties at the origin of the glitch is possible. A degeneracy between the helium abundance and the electronic degeneracy is found to exist, which particularly affects the helium estimate. Extending the method to cases where the glitch is subject to contamination (e.g. surface effects), we noted the importance of the slow glitch trend associated with hydrogen ionisation. We propose using a Gaussian process to disentangle the frequency glitch from surface effects.