论文标题
用劳动擦除劳动:黑暗模式和Google Play上的锁定行为
Erasing Labor with Labor: Dark Patterns and Lockstep Behaviors on Google Play
论文作者
论文摘要
Google Play的策略禁止使用激励安装,评分和评论来操纵应用程序的放置。但是,仍然存在激励平台上其他应用程序安装的应用程序。为了了解安装启动的应用如何影响用户,我们通过社会技术镜头检查其生态系统,并对其评论和权限进行混合方法分析。我们的数据集包含每天在60个这样的应用程序中收集的319K评论,这些应用程序累计占了超过16050万的安装。我们对评论进行定性分析,以揭示开发人员在安装启动应用程序中纳入各种类型的黑暗模式,从而突出了他们在用户和平台级别上的规范性问题。这些应用程序要求的权限验证了我们对黑模式的发现,超过92%的应用程序访问敏感用户信息。我们发现有关安装引起的应用程序的欺诈性评论的证据,然后将其模拟为动态的应用程序和审阅者的动态二分图。我们提出的对最先进的微簇异常检测算法的重新配置可产生有希望的初步结果,从而检测到这种欺诈。我们发现评论旨在提高安装启动应用程序的整体评分,发现了非常重要的锁定行为。在评估算法检测到的50个最可疑的群集后,我们发现(i)(i)在94%(47个簇)中(47个簇)的近乎相同的评论,以及(ii)超过35%(4,717个评论中的1,687个),以相同形式的临近临近层中的相同形式的评论。最后,我们在讨论中讨论了如何与劳动交织在一起,并对Google Play的信任和透明度构成威胁。
Google Play's policy forbids the use of incentivized installs, ratings, and reviews to manipulate the placement of apps. However, there still exist apps that incentivize installs for other apps on the platform. To understand how install-incentivizing apps affect users, we examine their ecosystem through a socio-technical lens and perform a mixed-methods analysis of their reviews and permissions. Our dataset contains 319K reviews collected daily over five months from 60 such apps that cumulatively account for over 160.5M installs. We perform qualitative analysis of reviews to reveal various types of dark patterns that developers incorporate in install-incentivizing apps, highlighting their normative concerns at both user and platform levels. Permissions requested by these apps validate our discovery of dark patterns, with over 92% apps accessing sensitive user information. We find evidence of fraudulent reviews on install-incentivizing apps, following which we model them as an edge stream in a dynamic bipartite graph of apps and reviewers. Our proposed reconfiguration of a state-of-the-art microcluster anomaly detection algorithm yields promising preliminary results in detecting this fraud. We discover highly significant lockstep behaviors exhibited by reviews that aim to boost the overall rating of an install-incentivizing app. Upon evaluating the 50 most suspicious clusters of boosting reviews detected by the algorithm, we find (i) near-identical pairs of reviews across 94% (47 clusters), and (ii) over 35% (1,687 of 4,717 reviews) present in the same form near-identical pairs within their cluster. Finally, we conclude with a discussion on how fraud is intertwined with labor and poses a threat to the trust and transparency of Google Play.