论文标题

与Nitsche方法比较的大约$ c^1 $多斑点空间

An approximate $C^1$ multi-patch space for isogeometric analysis with a comparison to Nitsche's method

论文作者

Weinmüller, Pascal, Takacs, Thomas

论文摘要

我们提出了大约$ C^1 $ -SMOOTH多块样条构建,可用于等几何分析(IGA)。 IGA的关键属性是,在单个补丁中实现高阶平滑度很容易。为了代表更复杂的几何形状,人们经常使用多块构造。在这种情况下,基本函数的全局连续性通常仅为$ c^0 $。因此,要获得$ c^1 $ -SMOOTH ISOOTORITIC功能,需要进行特殊的构造。当使用ISOOGEOMETRIC GALERKIN方法求解数值四阶问题(例如Biharmonic方程或Kirchhoff-love板/壳配方)时,此类空间很感兴趣。 多块域上全球$ c^1 $的同几何空间可以如(Collin,Sangalli,Takacs; Cagd,2016年)和(Kapl,Sangalli,Takacs; Cagd,2019年)所构建。这些构造需要所谓的分析适合$ g^1 $参数化。要允许在更通用的多块参数化的情况下$ c^1 $空间,我们需要增加多项式学位并放松$ C^1 $条件。我们采用了(Weinmüller,Takacs; Cmame,2021)中开发的两个斑点域的大约$ c^1 $构造,并将其扩展到更一般的多斑块域。 我们利用构造来解决Biharmonic模型问题,并将结果与​​Nitsche的方法进行比较。我们将这两种方法与非平凡接口的复杂多斑点结构域进行了比较。数值测试表明,所提出的施工在$ h $ fifinect下最佳收敛,可使用Nitsche的方法与解决方案相当。与弱势的耦合条件相反,大约$ c^1 $构造是明确的,无需引入其他条款即可稳定该方法。因此,由于不需要估计参数,因此可以更容易地使用新提出的方法。

We present an approximately $C^1$-smooth multi-patch spline construction which can be used in isogeometric analysis (IGA). A key property of IGA is that it is simple to achieve high order smoothness within a single patch. To represent more complex geometries one often uses a multi-patch construction. In this case, the global continuity for the basis functions is in general only $C^0$. Therefore, to obtain $C^1$-smooth isogeometric functions, a special construction for the basis is needed. Such spaces are of interest when solving numerically fourth-order problems, such as the biharmonic equation or Kirchhoff-Love plate/shell formulations, using an isogeometric Galerkin method. Isogeometric spaces that are globally $C^1$ over multi-patch domains can be constructed as in (Collin, Sangalli, Takacs; CAGD, 2016) and (Kapl, Sangalli, Takacs; CAGD, 2019). The constructions require so-called analysis-suitable $G^1$ parametrizations. To allow $C^1$ spaces over more general multi-patch parametrizations, we need to increase the polynomial degree and relax the $C^1$ conditions. We adopt the approximate $C^1$ construction for two-patch domains, as developed in (Weinmüller, Takacs; CMAME, 2021), and extend it to more general multi-patch domains. We employ the construction for a biharmonic model problem and compare the results with Nitsche's method. We compare both methods over complex multi-patch domains with non-trivial interfaces. The numerical tests indicate that the proposed construction converges optimally under $h$-refinement, comparable to the solution using Nitsche's method. In contrast to weakly imposing coupling conditions, the approximate $C^1$ construction is explicit and no additional terms need to be introduced to stabilize the method. Thus, the new proposed method can be used more easily as no parameters need to be estimated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源