论文标题
二维半导体中的深色超顿驱动能量漏斗到介电不均匀性
Dark-exciton driven energy funneling into dielectric inhomogeneities in two-dimensional semiconductors
论文作者
论文摘要
二维过渡金属二甲藻元化半导体(2D TMD)的光电和转运性能非常容易受到外部扰动的影响,从而通过合成后的修饰可以精确地量化材料功能。在这里,我们表明,纳米级不均匀性称为纳米泡,可用于应变,而在双层二硫化钨(WSE2)中,激发型激子转运的介电调节。我们使用超敏感的空间分辨光学显微镜来直接对激子的传输进行成像,这表明介电纳米泡在室温下在漏斗和捕获激子方面具有出人意料的效率,即使明亮激子的能量受到明显影响。我们的观察结果表明,电介质不均匀性中的激子漏斗是由动量的(黑暗)激子驱动的,其能量比明亮的激子对介电扰动更敏感。这些结果揭示了使用深色状态能量景观的介电工程技术在2D半导体中控制激子传输的新途径。
The optoelectronic and transport properties of two-dimensional transition metal dichalcogenide semiconductors (2D TMDs) are highly susceptible to external perturbation, enabling precise tailoring of material function through post-synthetic modifications. Here we show that nanoscale inhomogeneities known as nanobubbles can be used for both strain and, less invasively, dielectric tuning of exciton transport in bilayer tungsten disulfide (WSe2). We use ultrasensitive spatiotemporally resolved optical scattering microscopy to directly image exciton transport, revealing that dielectric nanobubbles are surprisingly efficient at funneling and trapping excitons at room temperature, even though the energies of the bright excitons are negligibly affected. Our observations suggest that exciton funneling in dielectric inhomogeneities is driven by momentum-indirect (dark) excitons whose energies are more sensitive to dielectric perturbations than bright excitons. These results reveal a new pathway to control exciton transport in 2D semiconductors with exceptional spatial and energetic precision using dielectric engineering of dark state energetic landscapes.