论文标题
狂欢:一种用于恢复边缘碎片磁盘的表面亮度和高度轮廓的非参数方法
Rave: A non-parametric method for recovering the surface brightness and height profiles of edge-on debris disks
论文作者
论文摘要
太阳系Kuiper带的外极类似物对外行星系统体系结构提供了独特的限制。径向特征,例如磁盘边缘的清晰度和子结构(例如间隙),可能表明磁盘内嵌入的行星。垂直方面,磁盘的高度可以限制嵌入式物体的质量。边缘碎片盘为同时访问材料的径向和垂直分布提供了一个独特的机会,但是以公正的方式恢复了任一分布是具有挑战性的。在这项研究中,我们提出了一种非参数方法,用于恢复具有相反的,边缘的碎片磁盘的表面亮度曲线(面对面的表面亮度随半径的函数)和高度分布(比例高度作为半径的函数)。该方法主要用于在热发射波长处观察,但也适用于在各向同性散射的假设下散射的光观测。通过删除对基本功能形式的假设,该算法对磁盘结构提供了更现实的约束。我们还将这种技术应用于Au Mic MIC碎屑磁盘的ALMA观察结果,并得出与参数方法的估计相一致的表面亮度曲线,但与参数化假设无关的可能模型范围更现实。我们的结果与0.8 au的均匀尺度高度一致,但是与半径线性增加的比例高度也是可能的。
Extrasolar analogues of the Solar System's Kuiper belt offer unique constraints on outer planetary system architecture. Radial features such as the sharpness of disk edges and substructures such as gaps may be indicative of embedded planets within a disk. Vertically, the height of a disk can constrain the mass of embedded bodies. Edge-on debris disks offer a unique opportunity to simultaneously access the radial and vertical distribution of material, however recovering either distribution in an unbiased way is challenging. In this study, we present a non-parametric method to recover the surface brightness profile (face-on surface brightness as a function of radius) and height profile (scale height as a function of radius) of azimuthally symmetric, edge-on debris disks. The method is primarily designed for observations at thermal emission wavelengths, but is also applicable to scattered light observations under the assumption of isotropic scattering. By removing assumptions on underlying functional forms, this algorithm provides more realistic constraints on disk structures. We also apply this technique to ALMA observations of the AU Mic debris disk and derive a surface brightness profile consistent with estimates from parametric approaches, but with a more realistic range of possible models that is independent of parametrisation assumptions. Our results are consistent with a uniform scale height of 0.8 au, but a scale height that increases linearly with radius is also possible.