论文标题
巨型横向和纵向磁性电离效应在多晶节鼻线半角MG3BI2中
Giant transverse and longitudinal magneto-thermoelectric effect in polycrystalline nodal-line semimetal Mg3Bi2
论文作者
论文摘要
拓扑半学为探索新的热电现象提供了新的机会,因为它们在费米表面周围具有异国情调和非平凡的电子结构拓扑。在这项研究中,我们报告了MG3BI2中巨型横向和纵向磁电压(MTE)效应的发现,该效应预计在没有旋转轨道耦合(SOC)的情况下,它被预测为II型Nodal-line半含量。最大横向功率因子为2182μWM^{ - 1} k^{ - 2}在13.5 K和6 Tesla时。在15 K和13 Tesla时,纵向功率因子最高可达3043μWM^{ - 1} k^{ - 2},比零强度的磁场高20倍,并且与最新的MTE MTE材料相当。通过在富含MG的载体浓度的情况下补偿MG损失,在这项工作中获得的样品显示了14个特斯拉的田间的较大线性的非饱和磁倍率为940%。相对于正常的MG缺乏MG3BI2样品,这是两种量子的增加。使用密度函数计算,我们将基本机制归因于没有SOC的母体节点线电子结构,并且具有SOC的各向异性费米表面形状,突出了高载体迁移率和开放电子轨道在矩空间中的重要作用。我们的工作通过设计新型量子材料中的特殊拓扑电子结构来设计Fermi表面,为高效的热电材料提供了新的途径。
Topological semimetals provide new opportunities for exploring new thermoelectric phenomena, because of their exotic and nontrivial electronic structure topology around the Fermi surface. In this study, we report on the discovery of giant transverse and longitudinal magneto-thermoelectric (MTE) effects in Mg3Bi2, which is predicted to be a type-II nodal-line semimetal in the absence of spin-orbit coupling (SOC). The maximum transverse power factor is 2182 μWm^{-1}K^{-2} at 13.5 K and 6 Tesla. The longitudinal power factor reaches up to 3043μWm^{-1}K^{-2} at 15 K and 13 Tesla, which is 20 times higher than in a zero-strength magnetic field and is also comparable to state-of-the-art MTE materials. By compensating Mg loss in the Mg-rich conditions for turning carrier concentration, the sample obtained in this work shows a large linear non-saturating magnetoresistance of 940% under a field of 14 Tesla. This is a two-orders-of-magnitude increase with respect to the normal Mg-deficiency Mg3Bi2 sample. Using density functional calculations, we attribute the underlying mechanism to the parent nodal-line electronic structure without SOC and the anisotropic Fermi surface shape with SOC, highlighting the essential role of high carrier mobility and open electron orbits in moment space. Our work offers a new avenue toward highly efficient thermoelectric materials through the design of Fermi surfaces with special topological electronic structures in novel quantum materials.