论文标题
CASPREF:因分布推荐的因果偏好学习
CausPref: Causal Preference Learning for Out-of-Distribution Recommendation
论文作者
论文摘要
尽管由于最近机器学习的逐步能力,推荐系统的巨大发展,但当前的推荐系统仍然容易受到用户和项目在现实情况下的分销转移的影响,从而导致测试环境中的性能急剧下降。在许多常见的应用中,只有稀疏数据的隐式反馈就更加严重。因此,在不同环境中促进推荐方法的性能稳定性至关重要。在这项工作中,我们首先从分布(OOD)概括的角度对隐式推荐问题进行了彻底的分析。然后,在我们的理论分析的指导下,我们建议将推荐特异性的DAG学习者纳入一个新型的基于因果的基于因果的建议框架,名为CASPREF,主要包括不变的用户偏好的因果学习和反质量负面样本,以处理隐式反馈。现实世界数据集的广泛实验结果清楚地表明,我们的方法在分布式设置的类型下大大超过了基准模型,并显示出令人印象深刻的解释性。
In spite of the tremendous development of recommender system owing to the progressive capability of machine learning recently, the current recommender system is still vulnerable to the distribution shift of users and items in realistic scenarios, leading to the sharp decline of performance in testing environments. It is even more severe in many common applications where only the implicit feedback from sparse data is available. Hence, it is crucial to promote the performance stability of recommendation method in different environments. In this work, we first make a thorough analysis of implicit recommendation problem from the viewpoint of out-of-distribution (OOD) generalization. Then under the guidance of our theoretical analysis, we propose to incorporate the recommendation-specific DAG learner into a novel causal preference-based recommendation framework named CausPref, mainly consisting of causal learning of invariant user preference and anti-preference negative sampling to deal with implicit feedback. Extensive experimental results from real-world datasets clearly demonstrate that our approach surpasses the benchmark models significantly under types of out-of-distribution settings, and show its impressive interpretability.