论文标题

迫击炮有限元方法的可扩展计算内核

Scalable computational kernels for mortar finite element methods

论文作者

Mayr, Matthias, Popp, Alexander

论文摘要

针对并行硬件体系结构进行模拟,本文介绍了用于迫击炮元元素方法中有效计算的计算内核。迫击炮方法可以高精度地对耦合条件进行变体一致的施加,但具有相当大的数值努力和成本来评估迫击炮积分以计算耦合操作员。在本文中,我们确定了并行数据布局和域分解中的瓶颈,从而阻碍了对砂浆积分的有效评估。然后,我们提出了一组计算策略,以恢复专门用于评估迫击炮术语的核心内核的最佳并行通信和可扩展性。我们在三维大型信息接触力学的背景下,示例研究了所提出的算法组件,包括固定且动态变化的界面拓扑的情况,但是这些概念可以自然而轻松地转移到其他迫击炮应用中,例如。经典的网格问题。为了恢复并行的可伸缩性,我们采用了界面离散化的重叠结构域的分解,独立于潜在的体积,然后通过以几何动机的降低幽灵数据来处理平行通信进行迫击炮评估。使用三维接触示例,我们证明了提出的算法的强和弱可扩展性,最多480个并行过程,并研究并讨论与迫击炮有限元方法相关的平行通信的改进。首次将动态载荷平衡应用于不断发展的接触区的迫击炮接触问题上,因此,在所有平行处理器中,计算工作均平衡,而与模拟的当前状态无关。

Targeting simulations on parallel hardware architectures, this paper presents computational kernels for efficient computations in mortar finite element methods. Mortar methods enable a variationally consistent imposition of coupling conditions at high accuracy, but come with considerable numerical effort and cost for the evaluation of the mortar integrals to compute the coupling operators. In this paper, we identify bottlenecks in parallel data layout and domain decomposition that hinder an efficient evaluation of the mortar integrals. We then propose a set of computational strategies to restore optimal parallel communication and scalability for the core kernels devoted to the evaluation of mortar terms. We exemplarily study the proposed algorithmic components in the context of three-dimensional large-deformation contact mechanics, both for cases with fixed and dynamically varying interface topology, yet these concepts can naturally and easily be transferred to other mortar applications, e.g. classical meshtying problems. To restore parallel scalability, we employ overlapping domain decompositions of the interface discretization independent from the underlying volumes and then tackle parallel communication for the mortar evaluation by a geometrically motivated reduction of ghosting data. Using three-dimensional contact examples, we demonstrate strong and weak scalability of the proposed algorithms up to 480 parallel processes as well as study and discuss improvements in parallel communication related to mortar finite element methods. For the first time, dynamic load balancing is applied to mortar contact problems with evolving contact zones, such that the computational work is well balanced among all parallel processors independent of the current state of the simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源