论文标题

如果人类可以看到它,那么您的系统也应:机器视觉组件的可靠性要求

If a Human Can See It, So Should Your System: Reliability Requirements for Machine Vision Components

论文作者

Hu, Boyue Caroline, Marsso, Lina, Czarnecki, Krzysztof, Salay, Rick, Shen, Huakun, Chechik, Marsha

论文摘要

机器视觉组件(MVC)正在成为安全至关重要的。确保其质量(包括安全)对于成功部署至关重要。保证取决于精确指定的可用性,理想情况下是机器可验证的要求。具有最先进性能的MVC依赖于机器学习(ML)和培训数据,但在很大程度上缺乏此类要求。 在本文中,我们解决了对MVC定义可验证的可靠性要求的必要性,以防止模拟环境中的全部现实和安全关键变化范围的转换。我们将人类绩效作为基准,将可靠性要求定义为:“如果图像中的变化不影响人类的决定,它们也不应影响MVC。”为此,我们提供:(1)一类安全相关的图像转换; (2)可靠性要求类别指定MVC的正确性保护和预测预测; (3)使用人类绩效实验数据从这些要求类实例化机器验证要求的方法; (4)来自大约2000名人类参与者的八种常用转换的图像识别的人类绩效实验数据; (5)一种自动检查MVC是否满足我们的要求的方法。此外,我们表明,通过评估13个最先进的预训练的图像分类模型的方法,我们的可靠性要求是可行的和可重复使用的。最后,我们证明我们的方法检测到其他现有方法无法检测到的MVC中的可靠性差距。

Machine Vision Components (MVC) are becoming safety-critical. Assuring their quality, including safety, is essential for their successful deployment. Assurance relies on the availability of precisely specified and, ideally, machine-verifiable requirements. MVCs with state-of-the-art performance rely on machine learning (ML) and training data but largely lack such requirements. In this paper, we address the need for defining machine-verifiable reliability requirements for MVCs against transformations that simulate the full range of realistic and safety-critical changes in the environment. Using human performance as a baseline, we define reliability requirements as: 'if the changes in an image do not affect a human's decision, neither should they affect the MVC's.' To this end, we provide: (1) a class of safety-related image transformations; (2) reliability requirement classes to specify correctness-preservation and prediction-preservation for MVCs; (3) a method to instantiate machine-verifiable requirements from these requirements classes using human performance experiment data; (4) human performance experiment data for image recognition involving eight commonly used transformations, from about 2000 human participants; and (5) a method for automatically checking whether an MVC satisfies our requirements. Further, we show that our reliability requirements are feasible and reusable by evaluating our methods on 13 state-of-the-art pre-trained image classification models. Finally, we demonstrate that our approach detects reliability gaps in MVCs that other existing methods are unable to detect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源