论文标题

强大的混合学习和专家增强

Robust Hybrid Learning With Expert Augmentation

论文作者

Wehenkel, Antoine, Behrmann, Jens, Hsu, Hsiang, Sapiro, Guillermo, Louppe, Gilles, Jacobsen, Jörn-Henrik

论文摘要

混合模型通过将来自数据学到的机器学习(ML)组件结合在一起,从而减少了专家模型的错误指定。与许多ML算法类似,混合模型性能保证仅限于训练分布。利用专家模型通常甚至在培训领域之外有效的见解,我们通过引入称为\ textit {Expert Exmentation}的混合数据增强策略来克服此限制。基于混合建模的概率形式化,我们证明可以将专家增强(可以纳入现有的混合系统中)提高了概括。我们从经验上验证了三个受控实验的专家增强,该实验将具有普通和部分微分方程的动态系统建模。最后,我们评估了在真正的双摆数据集中专家增强的潜在现实世界中的适用性。

Hybrid modelling reduces the misspecification of expert models by combining them with machine learning (ML) components learned from data. Similarly to many ML algorithms, hybrid model performance guarantees are limited to the training distribution. Leveraging the insight that the expert model is usually valid even outside the training domain, we overcome this limitation by introducing a hybrid data augmentation strategy termed \textit{expert augmentation}. Based on a probabilistic formalization of hybrid modelling, we demonstrate that expert augmentation, which can be incorporated into existing hybrid systems, improves generalization. We empirically validate the expert augmentation on three controlled experiments modelling dynamical systems with ordinary and partial differential equations. Finally, we assess the potential real-world applicability of expert augmentation on a dataset of a real double pendulum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源