论文标题
kleene定理用于高维自动机
Kleene Theorem for Higher-Dimensional Automata
论文作者
论文摘要
我们证明了高维自动机的Kleene定理。它指出,他们认识到的语言恰恰是有限间隔弹丸的理性夹有封闭的集合。这些语言的合理操作包括胶合作品,为此我们为pomset配备了界面。为了证明我们,我们引入了具有接口的较高维度的自动机,该界面在标记的前管类别上以预示为模型,并开发了受代数拓扑启发的工具和技术,例如圆柱体和(CO)纤维。高维自动机构成了非交流并发性的一般模型,该模型涵盖了许多其他方法。间隔订单用作并发和分布式系统的模型,其中事件会随时间扩展。因此,我们的工具和技术可能会在各种模型和应用中产生Kleene定理的模板。
We prove a Kleene theorem for higher-dimensional automata. It states that the languages they recognise are precisely the rational subsumption-closed sets of finite interval pomsets. The rational operations on these languages include a gluing composition, for which we equip pomsets with interfaces. For our proof, we introduce higher-dimensional automata with interfaces, which are modelled as presheaves over labelled precube categories, and develop tools and techniques inspired by algebraic topology, such as cylinders and (co)fibrations. Higher-dimensional automata form a general model of non-interleaving concurrency, which subsumes many other approaches. Interval orders are used as models for concurrent and distributed systems where events extend in time. Our tools and techniques may therefore yield templates for Kleene theorems in various models and applications.