论文标题
将机器学习模型集成到决策支持工具中,以预测潜在员工的工作
Integration of a machine learning model into a decision support tool to predict absenteeism at work of prospective employees
论文作者
论文摘要
目的 - 效率低下的招聘可能会导致较低的生产率和较高的培训成本。由于工作中的旷工造成的生产力损失,每年损失美国雇主数十亿美元。此外,雇主通常会花费大量时间来管理表现不佳的员工。这项研究的目的是开发一种决策支持工具,以预测潜在员工的旷工。设计/方法/方法 - 我们使用了一个流行的开放式数据集。为了对缺勤类别进行分类,已经对数据进行了预处理,并应用了四种机器学习分类方法:多项式逻辑回归(MLR),支持向量机(SVM),人工神经网络(ANN)和随机森林(RF)。我们根据几个验证分数选择了最佳模型,并将其性能与现有模型进行了比较。然后,我们将最佳模型集成到了拟议的基于Web的招聘经理中。调查结果 - 基于网络的决策工具允许雇用经理在雇用潜在员工之前做出更明智的决策,从而减少时间,财务损失并减少经济破产的可能性。原创性/价值 - 在本文中,我们提出了一个基于可以在招聘过程中收集的属性进行训练的模型。此外,招聘经理可能缺乏机器学习的经验,或者没有时间花费开发机器学习算法。因此,我们提出了一个基于Web的交互式工具,可以在没有机器学习算法的情况下使用该工具。
Purpose - Inefficient hiring may result in lower productivity and higher training costs. Productivity losses caused by absenteeism at work cost U.S. employers billions of dollars each year. Also, employers typically spend a considerable amount of time managing employees who perform poorly. The purpose of this study is to develop a decision support tool to predict absenteeism among potential employees. Design/methodology/approach - We utilized a popular open-access dataset. In order to categorize absenteeism classes, the data have been preprocessed, and four methods of machine learning classification have been applied: Multinomial Logistic Regression (MLR), Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Random Forests (RF). We selected the best model, based on several validation scores, and compared its performance against the existing model; we then integrated the best model into our proposed web-based for hiring managers. Findings - A web-based decision tool allows hiring managers to make more informed decisions before hiring a potential employee, thus reducing time, financial loss and reducing the probability of economic insolvency. Originality/value - In this paper, we propose a model that is trained based on attributes that can be collected during the hiring process. Furthermore, hiring managers may lack experience in machine learning or do not have the time to spend developing machine learning algorithms. Thus, we propose a web-based interactive tool that can be used without prior knowledge of machine learning algorithms.