论文标题
深厚的强化学习协助联合学习算法用于IIOT数据管理
Deep Reinforcement Learning Assisted Federated Learning Algorithm for Data Management of IIoT
论文作者
论文摘要
工业互联网(IIOT)的持续扩展规模导致IIT设备每时每刻都会产生大量的用户数据。根据最终用户的不同要求,这些数据通常具有很高的异质性和隐私性,而大多数用户不愿将其暴露于公众视图。如何在IIOT领域以有效且安全的方式管理这些时间序列数据仍然是一个空旷的问题,因此它吸引了学术界和行业的广泛关注。作为一种新的机器学习(ML)范式,联邦学习(FL)在培训异质和私人数据方面具有很大的优势。本文研究了FL技术应用程序,以管理无线网络环境中的IIT设备数据。为了提高模型聚合率并降低通信成本,我们将深入的加固学习(DRL)应用于IIT设备选择过程,特别是用于选择具有准确模型的IIT设备节点。因此,我们提出了由DRL协助的FL算法,可以考虑IIT设备数据培训的隐私和效率。通过分析IIOT设备的数据特性,我们使用MNIST,时尚MNIST和CIFAR-10数据集来表示IIOT生成的数据。在实验期间,我们采用深神经网络(DNN)模型来训练数据,实验结果表明,准确性可以达到97 \%以上,这证实了所提出算法的有效性。
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment. According to the different requirement of end users, these data usually have high heterogeneity and privacy, while most of users are reluctant to expose them to the public view. How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue, such that it has attracted extensive attention from academia and industry. As a new machine learning (ML) paradigm, federated learning (FL) has great advantages in training heterogeneous and private data. This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments. In order to increase the model aggregation rate and reduce communication costs, we apply deep reinforcement learning (DRL) to IIoT equipment selection process, specifically to select those IIoT equipment nodes with accurate models. Therefore, we propose a FL algorithm assisted by DRL, which can take into account the privacy and efficiency of data training of IIoT equipment. By analyzing the data characteristics of IIoT equipments, we use MNIST, fashion MNIST and CIFAR-10 data sets to represent the data generated by IIoT. During the experiment, we employ the deep neural network (DNN) model to train the data, and experimental results show that the accuracy can reach more than 97\%, which corroborates the effectiveness of the proposed algorithm.