论文标题

拓扑注意的Convlstm网络及其在EM图像中的应用

A Topology-Attention ConvLSTM Network and Its Application to EM Images

论文作者

Yang, Jiaqi, Hu, Xiaoling, Chen, Chao, Tsai, Chialing

论文摘要

分割的结构准确性对于生物医学图像中的罚款结构很重要。我们为3D图像分割提出了一种新颖的拓扑探测弯曲网络(TACNET),以实现3D分割任务的高结构准确性。具体而言,我们提出了一个空间拓扑注意事项(STA)模块,以处理3D图像作为2D图像切片的堆栈,并采用Convlstm来利用相邻切片的上下文结构信息。为了有效地跨切片传输关键拓扑信息,我们提出了一个迭代式培养基关注(ITA)模块,该模块为分割提供了更稳定的关键拓扑 - 关键拓扑图。定量和定性结果表明,我们所提出的方法在拓扑感知评估指标方面优于各种基准。

Structural accuracy of segmentation is important for finescale structures in biomedical images. We propose a novel TopologyAttention ConvLSTM Network (TACNet) for 3D image segmentation in order to achieve high structural accuracy for 3D segmentation tasks. Specifically, we propose a Spatial Topology-Attention (STA) module to process a 3D image as a stack of 2D image slices and adopt ConvLSTM to leverage contextual structure information from adjacent slices. In order to effectively transfer topology-critical information across slices, we propose an Iterative-Topology Attention (ITA) module that provides a more stable topology-critical map for segmentation. Quantitative and qualitative results show that our proposed method outperforms various baselines in terms of topology-aware evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源