论文标题

保留联合学习的隐私和安全性

Preserving Privacy and Security in Federated Learning

论文作者

Nguyen, Truc, Thai, My T.

论文摘要

已知联盟学习容易受到安全和隐私问题的影响。现有的研究重点是防止用户的中毒攻击或隐藏服务器的本地模型更新,但并非两者兼而有之。但是,整合这两条研究仍然是一个至关重要的挑战,因为它们经常相对于威胁模型相互冲突。在这项工作中,我们开发了一个原则框架,该框架既可以为用户提供隐私保证,又提供了防止其中毒攻击的检测。借助包括诚实但有趣的服务器和恶意用户的新威胁模型,我们首先建议使用服务器的同型加密来制定安全的聚合协议,以以私人方式组合本地模型更新。然后,利用零知识证明协议将检测本地模型中攻击的任务从服务器转移到用户。这里的关键观察是,服务器不再需要访问本地型号进行攻击检测。因此,我们的框架使中央服务器能够识别有毒的模型更新,而无需违反安全汇总的隐私保证。

Federated learning is known to be vulnerable to both security and privacy issues. Existing research has focused either on preventing poisoning attacks from users or on concealing the local model updates from the server, but not both. However, integrating these two lines of research remains a crucial challenge since they often conflict with one another with respect to the threat model. In this work, we develop a principle framework that offers both privacy guarantees for users and detection against poisoning attacks from them. With a new threat model that includes both an honest-but-curious server and malicious users, we first propose a secure aggregation protocol using homomorphic encryption for the server to combine local model updates in a private manner. Then, a zero-knowledge proof protocol is leveraged to shift the task of detecting attacks in the local models from the server to the users. The key observation here is that the server no longer needs access to the local models for attack detection. Therefore, our framework enables the central server to identify poisoned model updates without violating the privacy guarantees of secure aggregation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源