论文标题
理论为动态算法配置的参数控制基准测试
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration
论文作者
论文摘要
长期以来,已经观察到,进化算法和其他随机搜索启发式方法的性能可以从引导其优化行为的参数的非静态选择中受益。因此,识别合适配置(“参数控制”)或通过专用训练过程(“动态算法配置”)的机制是现代进化计算框架的重要组成部分。存在几种解决动态参数设置问题的方法,但我们几乎不明白哪种应用程序更喜欢哪种应用程序。就像在经典基准测试中一样,在这种情况下,具有已知基础真理的问题收集可以提供非常有意义的见解。不幸的是,具有众所周知的控制政策的设置非常罕见。 我们知道哪种参数设置最小化预期运行时的少数例外之一是领导者问题。我们通过分析只能从可能值的给定投资组合中选择参数的最佳控制策略来扩展此基准。这也使我们能够计算给定尺寸的最佳参数组合。我们通过分析DDQN增强学习方法的动态算法配置的行为来证明我们的基准测试的有用性。
It has long been observed that the performance of evolutionary algorithms and other randomized search heuristics can benefit from a non-static choice of the parameters that steer their optimization behavior. Mechanisms that identify suitable configurations on the fly ("parameter control") or via a dedicated training process ("dynamic algorithm configuration") are therefore an important component of modern evolutionary computation frameworks. Several approaches to address the dynamic parameter setting problem exist, but we barely understand which ones to prefer for which applications. As in classical benchmarking, problem collections with a known ground truth can offer very meaningful insights in this context. Unfortunately, settings with well-understood control policies are very rare. One of the few exceptions for which we know which parameter settings minimize the expected runtime is the LeadingOnes problem. We extend this benchmark by analyzing optimal control policies that can select the parameters only from a given portfolio of possible values. This also allows us to compute optimal parameter portfolios of a given size. We demonstrate the usefulness of our benchmarks by analyzing the behavior of the DDQN reinforcement learning approach for dynamic algorithm configuration.