论文标题
在Abelian群体上的半共享图上的完美状态转移
Perfect state transfer on semi-Cayley graphs over abelian groups
论文作者
论文摘要
在本文中,我们考虑了在Abelian群体上的半开采图上存在完美状态转移(不一定是规律的)的问题,即在具有半尺寸轨道的半毛和ABELIAN亚组的图表上。我们在具有PST的Abelian群体上构成了半播种图的表征。结果,我们在具有PST的索引2的Abelian亚组上给出了Cayley图的表征,这改善了Abelian群体,二面体组和Dicyclic群的Cayley图上的较早结果,并确定了Cayley图表上的cayley图表上的一般性二二二二二和普通的Dicclic群和具有PST的通用dicclic组。
In this paper, we consider the problem on the existence of perfect state transfer(PST for short) on semi-Cayley graphs over abelian groups (which are not necessarily regular), i.e on the graphs having semiregular and abelian subgroups of automorphisms with two orbits of equal size. We stablish a characterization of semi-Cayley graphs over abelian groups having PST. As a result, we give a characterization of Cayley graphs over groups with an abelian subgroup of index 2 having PST, which improves the earlier results on Cayley graphs over abelian groups, dihedral groups and dicyclic group and determines Cayley graphs over generalized dihedral groups and generalized dicyclic groups having PST.