论文标题

在一类非本地问题上,分数梯度约束

On a class of nonlocal problems with fractional gradient constraint

论文作者

Azevedo, A., Rodrigues, J. F., Santos, L.

论文摘要

我们考虑了一种希尔伯特人和一种指控方法,用于$ | d^σu| \ leq g $类型的分数梯度约束问题,涉及分布分数riesz梯度$ d^σ$,$ 0 <σ<1 $,以先前的成果呈现出这些非群体问题的解决方案和lagrange多年级的结果。 我们还证明了它们的收敛性为$σ\ nearrow1 $ to梯度约束$ | d u | \ leq g $。

We consider a Hilbertian and a charges approach to fractional gradient constraint problems of the type $|D^σu|\leq g$, involving the distributional fractional Riesz gradient $D^σ$, $0<σ<1$, extending previous results on the existence of solutions and Lagrange multipliers of these nonlocal problems. We also prove their convergence as $σ\nearrow1$ towards their local counterparts with the gradient constraint $|D u|\leq g$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源