论文标题

通过无监督的异常学习自动缺陷细分

Automatic defect segmentation by unsupervised anomaly learning

论文作者

Ofir, Nati, Yacobi, Ran, Granoviter, Omer, Levant, Boris, Shtalrid, Ore

论文摘要

本文解决了半导体制造中缺陷分割的问题。我们分割的输入是候选缺陷区域的扫描电子显微镜(SEM)图像。我们使用干净的背景图像数据集训练U-NET形状网络来细分缺陷。训练阶段的样本是自动生产的,因此不需要手动标记。为了丰富干净背景样本的数据集,我们应用了缺陷植入物增强。为此,我们在干净的样品中应用一个随机图像补丁的副本和粘贴。为了提高未标记数据方案的鲁棒性,我们通过无监督的学习方法和损失功能训练网络的功能。我们的实验表明,即使我们的数据集包含缺陷示例,我们也成功地以高质量的方式分割了真实缺陷。我们的方法还可以准确地在监督和标记的缺陷分段问题上执行。

This paper addresses the problem of defect segmentation in semiconductor manufacturing. The input of our segmentation is a scanning-electron-microscopy (SEM) image of the candidate defect region. We train a U-net shape network to segment defects using a dataset of clean background images. The samples of the training phase are produced automatically such that no manual labeling is required. To enrich the dataset of clean background samples, we apply defect implant augmentation. To that end, we apply a copy-and-paste of a random image patch in the clean specimen. To improve the robustness of the unlabeled data scenario, we train the features of the network with unsupervised learning methods and loss functions. Our experiments show that we succeed to segment real defects with high quality, even though our dataset contains no defect examples. Our approach performs accurately also on the problem of supervised and labeled defect segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源