论文标题

高度大小的子集中的长线

Long lines in subsets of large measure in high dimension

论文作者

Elboim, Dor, Klartag, Bo'az

论文摘要

我们证明,对于任何集合$ a \ subseteq [0,1]^n $,带有$ \ text {vol}(a)\ ge 1/2 $,存在一条线$ \ ell $,使得一维的lebesgue量$ \ ell \ cap a $至少为$ω(N^{1/4})$。指数$ 1/4 $很紧。更一般而言,对于概率度量,$ \ Mathbb r ^n $和$ 0 <a <1 $ define \ begin {equination*} l(μ,a):= \ inf_ {a; μ(a)= a} \ sup _ {\ ell \ text {line}} \ big | \ ell \ cap a \ big | \ end {equation*}其中$ | \ cdot | $代表一维的Lebesgue度量。当$μ$是产品量度时,当$μ$是$ \ ell _p $ ball上的均匀度量时,我们研究$ L(μ,a)$的渐近行为。我们在大量产品测量中观察到了相当统一的行为。另一方面,对于$ 1 \ leq p \ leq \ infty $的$ \ ell_p $ balls,我们发现有不同类型的相变。

We show that for any set $A\subseteq [0,1]^n$ with $\text{Vol}(A)\ge 1/2$ there exists a line $\ell $ such that the one-dimensional Lebesgue measure of $\ell \cap A$ is at least $Ω( n^{1/4} )$. The exponent $1/4$ is tight. More generally, for a probability measure $μ$ on $\mathbb R ^n$ and $0<a<1$ define \begin{equation*} L(μ,a):= \inf_{A ; μ(A) = a} \sup _{\ell \text{ line}} \big| \ell \cap A\big| \end{equation*} where $|\cdot | $ stands for the one-dimensional Lebesgue measure. We study the asymptotic behavior of $L(μ,a)$ when $μ$ is a product measure and when $μ$ is the uniform measure on the $\ell _p$ ball. We observe a rather unified behavior in a large class of product measures. On the other hand, for $\ell_p$ balls with $1 \leq p \leq \infty$ we find that there are phase transitions of different types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源