论文标题

通过主动子空间进行预一体

Pre-integration via Active Subspaces

论文作者

Liu, Sifan, Owen, Art B.

论文摘要

预一体化是条件蒙特卡洛到准蒙特卡洛和随机准蒙特卡洛的扩展。它可以减少但不能增加蒙特卡洛的差异。对于准蒙特·卡洛(Quasi-Monte Carlo),它可以提高积分的规律性,并有可能大大提高准确性。通常通过将$ d $输入变量之一集成到函数来完成。在高斯积分的常见情况下,也可以在变量的任何线性组合上进行预融合。我们建议这样做,然后选择活跃子空间分解中的第一个特征向量作为预集成的线性组合。我们在数值示例中发现,这种主动的子空间前整合策略具有竞争力,可以在亚洲选项上的主要组件构建中的第一个变量进行预融合,在这些变量中,已知主要组件非常有效。它在某些没有建立的默认设置的篮子选项上优于某些篮子选项上的其他预一体化方法。从理论上讲,就像在蒙特卡洛中一样,当人们使用加扰的净积分时,预一体化可以减少但不能增加差异。我们表明,活跃子空间分解中的铅特征向量与使用SOBOL'索引最大化的较低计算障碍标准与矢量密切相关,以找到高斯变量的最重要的线性组合。他们优化涉及梯度的类似期望。我们表明,领先的特征向量的Sobol索引标准与选择剩余的$ d-1 $ eigenVector的方式不变,以对高斯向量进行采样。

Pre-integration is an extension of conditional Monte Carlo to quasi-Monte Carlo and randomized quasi-Monte Carlo. It can reduce but not increase the variance in Monte Carlo. For quasi-Monte Carlo it can bring about improved regularity of the integrand with potentially greatly improved accuracy. Pre-integration is ordinarily done by integrating out one of $d$ input variables to a function. In the common case of a Gaussian integral one can also pre-integrate over any linear combination of variables. We propose to do that and we choose the first eigenvector in an active subspace decomposition to be the pre-integrated linear combination. We find in numerical examples that this active subspace pre-integration strategy is competitive with pre-integrating the first variable in the principal components construction on the Asian option where principal components are known to be very effective. It outperforms other pre-integration methods on some basket options where there is no well established default. We show theoretically that, just as in Monte Carlo, pre-integration can reduce but not increase the variance when one uses scrambled net integration. We show that the lead eigenvector in an active subspace decomposition is closely related to the vector that maximizes a less computationally tractable criterion using a Sobol' index to find the most important linear combination of Gaussian variables. They optimize similar expectations involving the gradient. We show that the Sobol' index criterion for the leading eigenvector is invariant to the way that one chooses the remaining $d-1$ eigenvectors with which to sample the Gaussian vector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源