论文标题
张量-CSPNET:一个新型的运动图像分类的新型几何深度学习框架
Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification
论文作者
论文摘要
深度学习(DL)已在脑电图(EEG)基于脑电图(EEG)的大脑界面界面(BCIS)中的绝大多数应用中进行了广泛研究,尤其是在过去五年中对于运动成像(MI)分类。 MI-EEG分类的主流DL方法使用卷积神经网络(CNN)利用了脑电图信号的暂时性模式,这些模式在视觉图像中取得了显着成功。但是,由于视觉图像的统计特征从根本上偏离了脑电图信号,因此出现了一个自然的问题,是否存在替代网络体系结构。为了解决这个问题,我们提出了一个名为Tensor-CspNet的新型几何深度学习(GDL)框架,该框架是从脑电图正面(SPD)流形的EEG信号中得出的空间协方差矩阵的特征,并完全捕获了临时的临时模式,从而在SPD歧管上启用了许多成功的型号,从而启用了许多与许多经验的型号,从而启用了许多成功的型号,从而使许多型号启用了许多型号。在实验中,在两个常用的MI-EEG数据集中,张量-CSPNET在交叉验证和保留方案上的最新性能达到或略高。此外,可视化和可解释性分析还表现出张量-CSPNET对MI-EEG分类的有效性。总而言之,在这项研究中,我们通过将DL方法概括为SPD歧管,为问题提供了可行的答案,这表明了MI-EEG分类的特定GDL方法的开始。
Deep learning (DL) has been widely investigated in a vast majority of applications in electroencephalography (EEG)-based brain-computer interfaces (BCIs), especially for motor imagery (MI) classification in the past five years. The mainstream DL methodology for the MI-EEG classification exploits the temporospatial patterns of EEG signals using convolutional neural networks (CNNs), which have remarkably succeeded in visual images. However, since the statistical characteristics of visual images depart radically from EEG signals, a natural question arises whether an alternative network architecture exists apart from CNNs. To address this question, we propose a novel geometric deep learning (GDL) framework called Tensor-CSPNet, which characterizes spatial covariance matrices derived from EEG signals on symmetric positive definite (SPD) manifolds and fully captures the temporospatiofrequency patterns using existing deep neural networks on SPD manifolds, integrating with experiences from many successful MI-EEG classifiers to optimize the framework. In the experiments, Tensor-CSPNet attains or slightly outperforms the current state-of-the-art performance on the cross-validation and holdout scenarios in two commonly-used MI-EEG datasets. Moreover, the visualization and interpretability analyses also exhibit the validity of Tensor-CSPNet for the MI-EEG classification. To conclude, in this study, we provide a feasible answer to the question by generalizing the DL methodologies on SPD manifolds, which indicates the start of a specific GDL methodology for the MI-EEG classification.