论文标题

惯性musculotendons的可区分模拟

Differentiable Simulation of Inertial Musculotendons

论文作者

Wang, Ying, Verheul, Jasper, Yeo, Sang-Hoon, Kalantari, Nima Khademi, Sueda, Shinjiro

论文摘要

我们提出了一种简单而实用的方法来纳入肌肉惯性的影响,这在图形和生物力学中都被以前的肌肉骨骼模拟器所忽略了。我们通过假设肌肉质量沿着肌肉的中心线分布来近似肌肉的惯性。我们用一系列雅各布人来表达肌肉长鸟子的运动,以便在最高级别,只有骨骼自由度降低才用于完全驱动骨骼和肌倾斜。我们的方法可以处理所有常用的Musculotendon路径类型,包括具有多个路径点和包裹表面的那些路径类型。对于涉及包裹表面的肌肉路径,我们使用神经网络对雅各布人进行建模,该雅各布人使用现有的包装表面库进行了训练,这使我们能够有效处理Musculotendon Paths与包装表面相撞时发生的Jacobian不连续性。我们展示了对高阶时间积分器,复杂接头,逆动力学,山坡肌肉模型和可不同性的支持。在极限上,随着肌肉质量减少到零,我们的方法优雅地降低了传统的模拟器,而无需支持肌肉惯性。最后,取决于应用,可以混合和匹配惯性和非惯性肌肉。

We propose a simple and practical approach for incorporating the effects of muscle inertia, which has been ignored by previous musculoskeletal simulators in both graphics and biomechanics. We approximate the inertia of the muscle by assuming that muscle mass is distributed along the centerline of the muscle. We express the motion of the musculotendons in terms of the motion of the skeletal joints using a chain of Jacobians, so that at the top level, only the reduced degrees of freedom of the skeleton are used to completely drive both bones and musculotendons. Our approach can handle all commonly used musculotendon path types, including those with multiple path points and wrapping surfaces. For muscle paths involving wrapping surfaces, we use neural networks to model the Jacobians, trained using existing wrapping surface libraries, which allows us to effectively handle the Jacobian discontinuities that occur when musculotendon paths collide with wrapping surfaces. We demonstrate support for higher-order time integrators, complex joints, inverse dynamics, Hill-type muscle models, and differentiability. In the limit, as the muscle mass is reduced to zero, our approach gracefully degrades to traditional simulators without support for muscle inertia. Finally, it is possible to mix and match inertial and non-inertial musculotendons, depending on the application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源