论文标题
取消时间序列的本地和全球表示
Decoupling Local and Global Representations of Time Series
论文作者
论文摘要
现实世界的时间序列数据通常是从几种变化来源生成的。捕获导致这种可变性因素的学习表示可以通过其潜在的生成过程更好地了解数据,并改善了下游机器学习任务的性能。本文提出了一种新颖的生成方法,用于学习时间序列变化的全球和局部因素。随着时间的流逝,每个样本模型非平稳性的局部表示,并以随机过程为先验,而样本的全局表示编码时间无关的特征。为了鼓励在表示之间进行解耦,我们引入了反事实正则化,以最大程度地减少两个变量之间的相互信息。在实验中,我们证明了模拟数据上真正的局部和全局可变性因素的成功恢复,并表明使用我们的方法学到的表示形式在现实世界数据集上的下游任务上产生了卓越的性能。我们认为,定义表示形式的建议方法对数据建模有益,并可以更好地了解现实数据的复杂性。
Real-world time series data are often generated from several sources of variation. Learning representations that capture the factors contributing to this variability enables a better understanding of the data via its underlying generative process and improves performance on downstream machine learning tasks. This paper proposes a novel generative approach for learning representations for the global and local factors of variation in time series. The local representation of each sample models non-stationarity over time with a stochastic process prior, and the global representation of the sample encodes the time-independent characteristics. To encourage decoupling between the representations, we introduce counterfactual regularization that minimizes the mutual information between the two variables. In experiments, we demonstrate successful recovery of the true local and global variability factors on simulated data, and show that representations learned using our method yield superior performance on downstream tasks on real-world datasets. We believe that the proposed way of defining representations is beneficial for data modelling and yields better insights into the complexity of real-world data.