论文标题

检测标记的序列数据中的分布差异,并应用于热带气旋卫星图像

Detecting Distributional Differences in Labeled Sequence Data with Application to Tropical Cyclone Satellite Imagery

论文作者

McNeely, Trey, Vincent, Galen, Wood, Kimberly M., Izbicki, Rafael, Lee, Ann B.

论文摘要

我们的目标是量化热带旋风(TC)卫星图像中的时空模式是否以及如何量化,信号是即将发生的快速强度变化事件。为了解决这个问题,我们提出了一个新的非参数测试,对时间序列图像和一系列二进制事件标签之间的关联测试。我们询问在事件之前与非事件之前的图像的24小时序列之间的分布差异(相关但分布相同)之间是否存在差异。通过将统计检验重写为回归问题,我们利用神经网络来推断TC对流的结构演变模式,这些模式代表了导致快速强度变化事件的指导。附近序列之间的依赖项通过估计标签系列边际分布的自举程序来处理。我们证明,只要标签系列的分布得到充分估计,就可以保证I型错误控制,这可以通过二进制TC事件标签的广泛历史数据更容易。我们表明的经验证据表明,我们提出的方法确定了与快速强化风险相关的红外图像的原型,通常以深层或深化的核心对流随着时间的推移为标志。这样的结果为改善快速强化的预测提供了基础。

Our goal is to quantify whether, and if so how, spatio-temporal patterns in tropical cyclone (TC) satellite imagery signal an upcoming rapid intensity change event. To address this question, we propose a new nonparametric test of association between a time series of images and a series of binary event labels. We ask whether there is a difference in distribution between (dependent but identically distributed) 24-h sequences of images preceding an event versus a non-event. By rewriting the statistical test as a regression problem, we leverage neural networks to infer modes of structural evolution of TC convection that are representative of the lead-up to rapid intensity change events. Dependencies between nearby sequences are handled by a bootstrap procedure that estimates the marginal distribution of the label series. We prove that type I error control is guaranteed as long as the distribution of the label series is well-estimated, which is made easier by the extensive historical data for binary TC event labels. We show empirical evidence that our proposed method identifies archetypes of infrared imagery associated with elevated rapid intensification risk, typically marked by deep or deepening core convection over time. Such results provide a foundation for improved forecasts of rapid intensification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源