论文标题
TIML:农业任务信息元学习
TIML: Task-Informed Meta-Learning for Agriculture
论文作者
论文摘要
用于农业的标签数据集在空间上极度不平衡。在开发数据 - 帕克斯区域的算法时,一种自然方法是使用从数据丰富的区域进行转移学习。尽管标准转移学习方法通常仅利用直接输入和输出,但地理空间图像和农业数据富含元数据,可以为转移学习算法提供信息,例如数据点的空间坐标或所学的任务类别。我们以先前的工作为基础,探讨了在数据范围区域中使用元学习对农业环境的使用,并介绍了任务信息元学习(TIML),这是对模型 - 静态元学习的增强,利用了任务特定的元数据。我们将TIML应用于农作物类型的分类和产量估计,并发现在两种情况下,在各种模型体系结构中,与一系列基准相比,TIML显着提高了性能。尽管我们专注于农业的任务,但Timl可以为任何具有特定于任务的元数据的元学习设置提供好处,例如对地理标签图像的分类和物种分布建模。
Labeled datasets for agriculture are extremely spatially imbalanced. When developing algorithms for data-sparse regions, a natural approach is to use transfer learning from data-rich regions. While standard transfer learning approaches typically leverage only direct inputs and outputs, geospatial imagery and agricultural data are rich in metadata that can inform transfer learning algorithms, such as the spatial coordinates of data-points or the class of task being learned. We build on previous work exploring the use of meta-learning for agricultural contexts in data-sparse regions and introduce task-informed meta-learning (TIML), an augmentation to model-agnostic meta-learning which takes advantage of task-specific metadata. We apply TIML to crop type classification and yield estimation, and find that TIML significantly improves performance compared to a range of benchmarks in both contexts, across a diversity of model architectures. While we focus on tasks from agriculture, TIML could offer benefits to any meta-learning setup with task-specific metadata, such as classification of geo-tagged images and species distribution modelling.