论文标题

分层谎言代数上的复杂结构

Complex structures on stratified Lie algebras

论文作者

Zhang, Junze

论文摘要

本文研究了代数的复杂结构的一些特性。特别是,我们专注于$ \ textit {nilpotent} $ \ textit {复杂结构} $,其特征在于合适的$ j $ invariant上升或下降中央系列$ \ mathfrak {d}^j $和$ \ m m mathfrak {d} _j _j $。在本文中,我们介绍了一个新的下降系列$ \ mathfrak {p} _j $,并用它来证明nilpotent复杂结构的新表征。我们还检查了分层谎言代数上的nilpotent复合结构是否保留地层。我们发现,存在一个$ j $ invariant的分层,步骤$ 2 $ nilpotent lie代数具有复杂的结构。

This paper investigates some properties of complex structures on Lie algebras. In particular, we focus on $\textit{nilpotent}$ $\textit{complex structures}$ that are characterized by a suitable $J$-invariant ascending or descending central series $\mathfrak{d}^j$ and $\mathfrak{d}_j$ respectively. In this article, we introduce a new descending series $\mathfrak{p}_j$ and use it to give proof of a new characterization of nilpotent complex structures. We examine also whether nilpotent complex structures on stratified Lie algebras preserve the strata. We find that there exists a $J$-invariant stratification on a step $2$ nilpotent Lie algebra with a complex structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源