论文标题
3型刺的弧度图
Arc diagrams on 3-manifold spines
论文作者
论文摘要
我们将链接预测与三个manifolds的三价刺刺建立理论。我们证明了一个reidemeister定理,提供了一组足够的组合动作,足以将同位素链接的投影联系起来。我们还表明,任何链接都允许对任何特殊脊柱的无交叉投影,并且我们完善定理以提供一组足够相关的无交叉图的组合动作。最后,我们讨论了与Turaev的影子世界的联系,将我们的结果解释为关于4个阶级的阴影等效性的陈述。
We develop a theory of link projections to trivalent spines of 3-manifolds. We prove a Reidemeister Theorem providing a set of combinatorial moves sufficient to relate the projections of isotopic links. We also show that any link admits a crossingless projection to any special spine and we refine our theorem to provide a set of combinatorial moves sufficient to relate crossingless diagrams. Finally, we discuss the connection to Turaev's shadow world, interpreting our result as a statement about shadow equivalence of a class of 4-manifolds.