论文标题
神经双重轮廓
Neural Dual Contouring
论文作者
论文摘要
我们介绍了神经双重轮廓(NDC),这是一种基于双重轮廓(DC)的新数据驱动方法的新数据驱动方法。像传统的DC一样,它可以完全产生一个每个网格单元的一个顶点,每个网格边缘交叉路口都会产生一个四边形,这是一个自然而有效的结构,用于再现锋利的特征。但是,NDC使用神经网络来预测它们,而不是使用直接取决于难以符合的表面梯度的手工制作的功能来计算顶点位置和边缘交叉点。结果,可以训练NDC从签名或未签名的距离字段,二进制体素电网或点云(带有或不带有正常的)中产生网格;如果输入代表薄板或部分表面的情况,它可以产生开放的表面。在使用五个突出数据集的实验期间,我们发现在其中一个数据集中接受培训时,NDC对其他数据集进行了很好的概括。此外,与以前的学识渊博(例如神经行进立方体,卷积占用网络)和传统方法相比,NDC提供了更好的表面重建精度,特征保存,输出复杂性,三角形质量和推理时间。代码和数据可从https://github.com/czq142857/ndc获得。
We introduce neural dual contouring (NDC), a new data-driven approach to mesh reconstruction based on dual contouring (DC). Like traditional DC, it produces exactly one vertex per grid cell and one quad for each grid edge intersection, a natural and efficient structure for reproducing sharp features. However, rather than computing vertex locations and edge crossings with hand-crafted functions that depend directly on difficult-to-obtain surface gradients, NDC uses a neural network to predict them. As a result, NDC can be trained to produce meshes from signed or unsigned distance fields, binary voxel grids, or point clouds (with or without normals); and it can produce open surfaces in cases where the input represents a sheet or partial surface. During experiments with five prominent datasets, we find that NDC, when trained on one of the datasets, generalizes well to the others. Furthermore, NDC provides better surface reconstruction accuracy, feature preservation, output complexity, triangle quality, and inference time in comparison to previous learned (e.g., neural marching cubes, convolutional occupancy networks) and traditional (e.g., Poisson) methods. Code and data are available at https://github.com/czq142857/NDC.