论文标题
使用时间依赖的变分原理,通过张量网络进行集体中微子振荡
Collective neutrino oscillations with tensor networks using a time-dependent variational principle
论文作者
论文摘要
如果一种含有风味的中微子的系统处于足够高的密度,即中微子 - 中微子中微子相干散射是不可忽略的,则该系统成为时间依赖的多体问题。一个重要且开放的问题是,是否通过平均场方法充分描述了风味的演化,还是通过非平凡的量子纠缠衡量的中微子哈密顿量的两体相互作用而引起的相关性很大。多体量子系统的时间演变的数值计算是具有挑战性的,因为希尔伯特空间的大小呈指数缩放,而系统中的颗粒数n的数量。因此,重要的是要研究较大的n值的近似值但超出均值的数值处理。在这里,我们研究了张量网络方法的疗效,以计算n值在n的较大值的相互作用中微子的时间演变,而不是传统方法。特别是,我们介绍了时间依赖性变分原理方法来解决中微子哈密顿量的长期相互作用(在动量空间中),其中包括许多不同的真空振荡频率。我们还根据该哈密顿量已知的即时保守的电荷算子来定义新的误差度量,以确定大N张量网络计算的有效性。
If a system of flavor-oscillating neutrinos is at high enough densities that neutrino-neutrino coherent forward scatterings are non-negligible, the system becomes a time-dependent many-body problem. An important and open question is whether the flavor evolution is sufficiently described by a mean-field approach or can be strongly affected by correlations arising from two-body interactions in the neutrino Hamiltonian, as measured by nontrivial quantum entanglement. Numerical computations of the time evolution of many-body quantum systems are challenging because the size of the Hilbert space scales exponentially with the number of particles N in the system. Thus, it is important to investigate approximate but beyond-mean-field numerical treatments at larger values of N. Here we investigate the efficacy of tensor network methods to calculate the time evolution of interacting neutrinos at larger values of N than are possible with conventional methods. In particular, we introduce the use of time-dependent variational principle methods to address the long-range (in momentum space) interactions of the neutrino Hamiltonian when including many distinct vacuum oscillation frequencies. We also define new error measures based upon the instantaneously conserved charge operators known for this Hamiltonian to determine validity of large-N tensor network calculations.