论文标题
通过捐赠商品来消除嫉妒的多元算法
Multivariate Algorithmics for Eliminating Envy by Donating Goods
论文作者
论文摘要
在某些应用程序中,将一组不可分割的资源划分为一组代理至关重要。但是,在实施分配后,代理的偏好可能会改变,并且可能会出现嫉妒。我们研究以下问题以应对这种情况:给定对具有基于附加效应的偏好的代理商的不可分割的资源分配,是否有可能在社交上捐赠一些资源(这意味着将这些资源从分配实例中删除),以便将所得的修改后的分配不含羡慕(最多一个)。我们要求删除资源的数量和/或导致的实用福利分配损失是有限的。我们对考虑各种自然和特定问题的参数(例如,代理的数量,已删除资源的数量或最初分配中分配给代理的最大资源数量)和不同的偏好模型,包括非偏好模型,包括非偏好模型的(包括非偏好模型和0/1票价),对此问题的(参数化)计算复杂性进行了详尽的研究。在我们的研究中,我们获得了一组丰富的(参数化的)障碍性和顽固性结果,并发现了几个令人惊讶的对比,例如,在两个密切相关的公平概念之间,令人羡慕和嫉妒的概念与一种善良的影响以及参数的影响之间的最大数量和福利的影响之间的最大数量和福利之间。
Fairly dividing a set of indivisible resources to a set of agents is of utmost importance in some applications. However, after an allocation has been implemented the preferences of agents might change and envy might arise. We study the following problem to cope with such situations: Given an allocation of indivisible resources to agents with additive utility-based preferences, is it possible to socially donate some of the resources (which means removing these resources from the allocation instance) such that the resulting modified allocation is envy-free (up to one good). We require that the number of deleted resources and/or the caused utilitarian welfare loss of the allocation are bounded. We conduct a thorough study of the (parameterized) computational complexity of this problem considering various natural and problem-specific parameters (e.g., the number of agents, the number of deleted resources, or the maximum number of resources assigned to an agent in the initial allocation) and different preference models, including unary and 0/1-valuations. In our studies, we obtain a rich set of (parameterized) tractability and intractability results and discover several surprising contrasts, for instance, between the two closely related fairness concepts envy-freeness and envy-freeness up to one good and between the influence of the parameters maximum number and welfare of the deleted resources.