论文标题

调查神经网络量子状态中的网络参数

Investigating Network Parameters in Neural-Network Quantum States

论文作者

Nomura, Yusuke

论文摘要

最近,使用人工神经网络的量子状态表示已开始被认为是一种强大的工具。但是,由于机器学习的黑框性质,很难分析机器学习的内容或为什么功能强大。在这里,通过应用最简单的神经网络之一,即受限制的玻尔兹曼机(RBM),将其用于一维(1D)横向场ISING(TFI)模型的地面表示,我们试图直接分析优化的网络参数。在RBM优化中,将零温度量子状态映射到构成RBM的扩展ISING旋转的有限温度经典状态。我们发现,通过增加横向场的量子相转变从1D TFI模型中的无序相变,清楚地反映在优化的RBM参数的行为中,因此在经典RBM Ising系统的有限温度相图中。目前对神经网络参数和量子相之间的对应关系的发现表明,对神经网络参数的仔细研究可能会为从神经网络波函数中提取非平凡的物理见解提供新的途径。

Recently, quantum-state representation using artificial neural networks has started to be recognized as a powerful tool. However, due to the black-box nature of machine learning, it is difficult to analyze what machine learns or why it is powerful. Here, by applying one of the simplest neural networks, the restricted Boltzmann machine (RBM), to the ground-state representation of the one-dimensional (1D) transverse-field Ising (TFI) model, we make an attempt to directly analyze the optimized network parameters. In the RBM optimization, a zero-temperature quantum state is mapped onto a finite-temperature classical state of the extended Ising spins that constitute the RBM. We find that the quantum phase transition from the ordered phase to the disordered phase in the 1D TFI model by increasing the transverse field is clearly reflected in the behaviors of the optimized RBM parameters and hence in the finite-temperature phase diagram of the classical RBM Ising system. The present finding of a correspondence between the neural-network parameters and quantum phases suggests that a careful investigation of the neural-network parameters may provide a new route to extracting nontrivial physical insights from the neural-network wave functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源