论文标题
Disterge:加快分布式边缘设备上的卷积神经网络推断
DistrEdge: Speeding up Convolutional Neural Network Inference on Distributed Edge Devices
论文作者
论文摘要
随着带有计算资源(例如嵌入式GPU,手机和笔记本电脑)的边缘设备数量的增加,最近的研究表明,在多个边缘设备上进行协作运行卷积神经网络(CNN)推断可能是有益的。但是,这些研究对设备的条件做出了有力的假设,并且它们的应用远非实用。在这项工作中,我们提出了一种称为Distredge的通用方法,以在具有多个物联网边缘设备的环境中提供CNN推理分布策略。通过解决CNN计算的设备,网络条件和非线性字符中的异质性,Distregge可以使用深度强化学习技术适应多种情况(例如,具有不同的网络条件,各种设备类型)。我们利用最新的嵌入式AI计算设备(例如Nvidia Jetson产品)在实验中构建异质设备类型的案例。根据我们的评估,Disterged可以根据设备的计算字符和网络条件正确调整分配策略。与最先进的方法相比,它达到1.1至3倍的速度。
As the number of edge devices with computing resources (e.g., embedded GPUs, mobile phones, and laptops) increases, recent studies demonstrate that it can be beneficial to collaboratively run convolutional neural network (CNN) inference on more than one edge device. However, these studies make strong assumptions on the devices' conditions, and their application is far from practical. In this work, we propose a general method, called DistrEdge, to provide CNN inference distribution strategies in environments with multiple IoT edge devices. By addressing heterogeneity in devices, network conditions, and nonlinear characters of CNN computation, DistrEdge is adaptive to a wide range of cases (e.g., with different network conditions, various device types) using deep reinforcement learning technology. We utilize the latest embedded AI computing devices (e.g., NVIDIA Jetson products) to construct cases of heterogeneous devices' types in the experiment. Based on our evaluations, DistrEdge can properly adjust the distribution strategy according to the devices' computing characters and the network conditions. It achieves 1.1 to 3x speedup compared to state-of-the-art methods.