论文标题

永久维护具有不同紧迫性要求的机器

Perpetual maintenance of machines with different urgency requirements

论文作者

Gąsieniec, Leszek, Jurdziński, Tomasz, Klasing, Ralf, Levcopoulos, Christos, Lingas, Andrzej, Min, Jie, Radzik, Tomasz

论文摘要

花园$ g $由$ n \ ge 1 $ bamboos $ b_1,b_2,...,b_n $,各自的每日增长率$ h_1 \ ge h_2 \ ge h_2 \ ge \ ge \ dots \ ge h_n $。假定竹子的初始高度为零。机器人的园丁定期维护花园,根据某些时间表将竹子放在竹子上,并将其修剪为零。竹制花园修剪问题(BGT)是设计一个永久的切割时间表,以保持竹制花园的高度尽可能低。竹制花园是一个比喻,用于由机器人使用的机器人必须使用的机器,该机器人一次只能为一台机器提供服务。目的是设计一个永久的维修时间表,该时间表可最大程度地减少服务的最大(加权)等待时间。 我们考虑了BGT的两个变体。在离散的BGT中,机器人每天结束时仅修剪一根竹子。在连续的BGT中,可以随时切割竹子,但是,机器人需要时间从一个竹子移到另一个竹子。 对于离散的BGT,我们显示出生长速率平衡和一般情况下的情况下的近似算法。前算法解决了有关风车问题的猜想之一。一般近似算法在先前的最佳近似值率上有所改善。对于连续的BGT,我们提出了达到近似值的近似算法$ o(\ log \ lceil h_1/h_n \ rceil)$和$ o(\ log n)$。

A garden $G$ is populated by $n\ge 1$ bamboos $b_1, b_2, ..., b_n$ with the respective daily growth rates $h_1 \ge h_2 \ge \dots \ge h_n$. It is assumed that the initial heights of bamboos are zero. The robotic gardener maintaining the garden regularly attends bamboos and trims them to height zero according to some schedule. The Bamboo Garden Trimming Problem (BGT) is to design a perpetual schedule of cuts to maintain the elevation of the bamboo garden as low as possible. The bamboo garden is a metaphor for a collection of machines which have to be serviced, with different frequencies, by a robot which can service only one machine at a time. The objective is to design a perpetual schedule of servicing which minimizes the maximum (weighted) waiting time for servicing. We consider two variants of BGT. In discrete BGT the robot trims only one bamboo at the end of each day. In continuous BGT the bamboos can be cut at any time, however, the robot needs time to move from one bamboo to the next. For discrete BGT, we show tighter approximation algorithms for the case when the growth rates are balanced and for the general case. The former algorithm settles one of the conjectures about the Pinwheel problem. The general approximation algorithm improves on the previous best approximation ratio. For continuous BGT, we propose approximation algorithms which achieve approximation ratios $O(\log \lceil h_1/h_n\rceil)$ and $O(\log n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源