论文标题
双曲线空间上的玻璃体凝结
Bose-Einstein condensation on hyperbolic spaces
论文作者
论文摘要
数学物理学中的一个众所周知的猜想断言,相互作用的玻色气体在热力学极限中表现出Bose-Einstein凝结(BEC)。我们考虑某些双曲线空间上的bose气。在这种情况下,人们从无限量的限制中获得了BEC的简短证明,这是由于存在laplacian的体积无关光谱间隙的存在。
A well-known conjecture in mathematical physics asserts that the interacting Bose gas exhibits Bose-Einstein condensation (BEC) in the thermodynamic limit. We consider the Bose gas on certain hyperbolic spaces. In this setting, one obtains a short proof of BEC in the infinite-volume limit from the existence of a volume-independent spectral gap of the Laplacian.