论文标题
来自量子场理论的共振复发渐近学
Resonant resurgent asymptotics from quantum field theory
论文作者
论文摘要
我们对量子场理论肾上腺龙进行全阶复出分析,该分析有助于六维标量$ ϕ^3 $理论中的异常维度,并由第三阶非线性微分方程控制。我们以猜想且经过良好的测试公式来增强与肾上腺素相关的分歧扰动膨胀。这种肾上腺素奇点的一个独特特征是对数项的外观,从跨系列中的二 - 恩斯坦顿顺序开始。为了强调这一点并说明我们的方法,我们还分析了跨系列的二阶非线性微分方程,该方程表现出类似的共振结构,但缺乏对数贡献。
We perform an all-order resurgence analysis of a quantum field theory renormalon that contributes to an anomalous dimension in six-dimensional scalar $ϕ^3$ theory and is governed by a third-order nonlinear differential equation. We augment the factorially divergent perturbative expansion associated to the renormalon by asymptotic expansions to all instanton orders, in a conjectured and well-tested formula. A distinctive feature of this renormalon singularity is the appearance of logarithmic terms, starting at second-instanton order in the trans-series. To highlight this and to illustrate our methods, we also analyze the trans-series for a closely related second-order nonlinear differential equation that exhibits a similarly resonant structure but lacks logarithmic contributions.