论文标题

在移动平台上的语义分割模型的表征,以灾难击中区域进行自动化

Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation in Disaster-Struck Zones

论文作者

Zelek, Ryan, Jeon, Hyeran

论文摘要

无人车在搜索和将受害者定位在受灾地区(例如击离地震带)中的作用变得越来越重要。地震区域的自动训练面临着一个独特的挑战,即发现不规则形状的障碍,例如道路裂缝,街道上的碎屑和水坑。在本文中,我们在移动嵌入式平台上表征了许多最先进的FCN模型,以在这些站点上进行自动训练,这些站点包含极其不规则的障碍。我们根据准确性,性能和能源效率评估模型。我们为设计的视觉系统提供了一些优化。最后,我们讨论了这些模型的权衡,用于几个可以执行自动化的移动平台。为了使车辆能够安全地驾驶地震撞击区域,我们编制了一个新的注释图像数据库,该数据库的各种地震影响区域与传统的道路损害数据库不同。我们使用许多最先进的语义分割模型来训练数据库,以识别地震撞击区域所特有的障碍。根据统计和权衡,为移动车辆平台选择了最佳的CNN模型,我们将其应用于设计的低功率和极低功率配置。据我们所知,这是第一项确定独特挑战并讨论基于边缘的自动化移动车辆对地震带地区的准确性,性能和能量影响的研究。我们提出的数据库和训练有素的模型已公开可用。

The role of unmanned vehicles for searching and localizing the victims in disaster impacted areas such as earthquake-struck zones is getting more important. Self-navigation on an earthquake zone has a unique challenge of detecting irregularly shaped obstacles such as road cracks, debris on the streets, and water puddles. In this paper, we characterize a number of state-of-the-art FCN models on mobile embedded platforms for self-navigation at these sites containing extremely irregular obstacles. We evaluate the models in terms of accuracy, performance, and energy efficiency. We present a few optimizations for our designed vision system. Lastly, we discuss the trade-offs of these models for a couple of mobile platforms that can each perform self-navigation. To enable vehicles to safely navigate earthquake-struck zones, we compiled a new annotated image database of various earthquake impacted regions that is different than traditional road damage databases. We train our database with a number of state-of-the-art semantic segmentation models in order to identify obstacles unique to earthquake-struck zones. Based on the statistics and tradeoffs, an optimal CNN model is selected for the mobile vehicular platforms, which we apply to both low-power and extremely low-power configurations of our design. To our best knowledge, this is the first study that identifies unique challenges and discusses the accuracy, performance, and energy impact of edge-based self-navigation mobile vehicles for earthquake-struck zones. Our proposed database and trained models are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源