论文标题
准平衡称重矩阵,签名的定期图和关联方案
Quasi-balanced weighing matrices, signed strongly regular graphs and association schemes
论文作者
论文摘要
如果$ | W | W | W | W |^\ top = | w |^\ top | w | $最多有两个偏高的条目,其中$ | w | _ {ij {ij} = | w_ {ij {ij} | $,称重矩阵$ w $是准平衡的。如果$ | w | $与其邻接矩阵相吻合,则准平衡的称重矩阵$ w $符合强烈的规则图。除其他外,还提出了签名的定期图表及其同等关联方案。
A weighing matrix $W$ is quasi-balanced if $|W||W|^\top=|W|^\top|W|$ has at most two off-diagonal entries, where $|W|_{ij}=|W_{ij}|$. A quasi-balanced weighing matrix $W$ signs a strongly regular graph if $|W|$ coincides with its adjacency matrix. Among other things, signed strongly regular graphs and their equivalent association schemes are presented.