论文标题

CMB B模式实验的极化角度要求。应用于Litebird卫星

Polarization angle requirements for CMB B-mode experiments. Application to the LiteBIRD satellite

论文作者

Vielva, P., Martínez-González, E., Casas, F. J., Matsumura, T., Henrot-Versillé, S., Komatsu, E., Aumont, J., Aurlien, R., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Calabrese, E., Cheung, K., Columbro, F., Coppolecchia, A., de Bernardis, P., de Haan, T., de la Hoz, E., De Petris, M., Della Torre, S., Diego-Palazuelos, P., Eriksen, H. K., Errard, J., Finelli, F., Franceschet, C., Fuskeland, U., Galloway, M., Ganga, K., Gervasi, M., Génova-Santos, R. T., Ghigna, T., Gjerløw, E., Gruppuso, A., Hazumi, M., Herranz, D., Hivon, E., Kohri, K., Lamagna, L., Leloup, C., Macias-Perez, J., Masi, S., Matsuda, F. T., Morgante, G., Nakano, R., Nati, F., Natoli, P., Nerval, S., Odagiri, K., Oguri, S., Pagano, L., Paiella, A., Paoletti, D., Piacentini, F., Polenta, G., Puglisi, G., Remazeilles, M., Ritacco, A., Rubino-Martin, J. A., Scott, D., Sekimoto, Y., Shiraishi, M., Signorelli, G., Takakura, H., Tartari, A., Thompson, K. L., Tristram, M., Vacher, L., Vittorio, N., Wehus, I. K., Zannoni, M.

论文摘要

提出了一种在CMB极化实验的给定频率下提供不同检测器的极化角度要求的方法。每个检测器集的极化角度的不确定性与张量与标准比$ r $参数的给定偏差有关。该方法基于使用检测器集的线性组合来获得CMB极化信号。另外,假设极化角度的不确定性在较小的角度极限(低于几度)中,则可以得出分析表达式以建立要求。该方法还解释了检测器之间的可能相关性,该检测器可能源自光学,晶片等。该方法应用于Litebird空间任务。我们表明,对于最限制的情况(即检测器组之间的极化角度系统完全相关),极化角度不确定性的要求在最敏感的频带上约为1个arcmin,最敏感的频段(即$ \ \ \ \ \ \ \ \ ghz)和最高($ $ ghz and $ ghz)($ \ y 40)($ \ i. $ \ ghz)($ \ i。 400 $ GHz)观察带。相反,对于最不限制的情况(即,在检测器集之间没有相关性的角度系统的相关性),要求的限制性比以前的情况少5美元。在全局和望远镜水平上,一些弧形的极化角度知识足以足以与全局系统误差相关,并且可以放松两个因子,以使探测器极化角度完全不相关的误差。需要报告的不确定性水平,以使$ r $的偏见是由于系统的低于Litebird合作所确定的限制。

A methodology to provide the polarization angle requirements for different sets of detectors, at a given frequency of a CMB polarization experiment, is presented. The uncertainties in the polarization angle of each detector set are related to a given bias on the tensor-to-scalar ratio $r$ parameter. The approach is grounded in using a linear combination of the detector sets to obtain the CMB polarization signal. In addition, assuming that the uncertainties on the polarization angle are in the small angle limit (lower than a few degrees), it is possible to derive analytic expressions to establish the requirements. The methodology also accounts for possible correlations among detectors, that may originate from the optics, wafers, etc. The approach is applied to the LiteBIRD space mission. We show that, for the most restrictive case (i.e., full correlation of the polarization angle systematics among detector sets), the requirements on the polarization angle uncertainties are of around 1 arcmin at the most sensitive frequency bands (i.e., $\approx 150$ GHz) and of few tens of arcmin at the lowest (i.e., $\approx 40$ GHz) and highest (i.e., $\approx 400$ GHz) observational bands. Conversely, for the least restrictive case (i.e., no correlation of the polarization angle systematics among detector sets), the requirements are $\approx 5$ times less restrictive than for the previous scenario. At the global and the telescope levels, polarization angle knowledge of a few arcmins is sufficient for correlated global systematic errors and can be relaxed by a factor of two for fully uncorrelated errors in detector polarization angle. The reported uncertainty levels are needed in order to have the bias on $r$ due to systematics below the limit established by the LiteBIRD collaboration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源