论文标题
通过影响函数近似于大规模的完整共形预测
Approximating Full Conformal Prediction at Scale via Influence Functions
论文作者
论文摘要
共形预测(CP)是围绕传统机器学习模型的包装纸,在交换性的唯一假设下提供了保证;在分类问题中,对于所选的显着性级别$ \ varepsilon $,CP保证错误率最多是$ \ varepsilon $,而不管基本模型是否已符合规定。但是,“完整” CP的过度计算成本导致研究人员设计可扩展的替代方案,而这些替代方案并不能获得全CP的相同保证或统计能力。在本文中,我们使用影响功能有效地近似完整的CP。我们证明我们的方法是完整CP的一致近似值,并且从经验上表明,随着训练集的增加,近似误差变得较小。例如,以$ 10^{3} $训练点,两种方法输出p值的$ <10^{ - 3} $ apanial:对于任何实际应用来说都是可忽略的错误。我们的方法可以将完整的CP扩展到大型现实世界数据集。我们将完整的CP近似(ACP)与主流CP替代方案进行了比较,并观察到我们的方法在计算上具有竞争力,同时享受完整CP的统计预测能力。
Conformal prediction (CP) is a wrapper around traditional machine learning models, giving coverage guarantees under the sole assumption of exchangeability; in classification problems, for a chosen significance level $\varepsilon$, CP guarantees that the error rate is at most $\varepsilon$, irrespective of whether the underlying model is misspecified. However, the prohibitive computational costs of "full" CP led researchers to design scalable alternatives, which alas do not attain the same guarantees or statistical power of full CP. In this paper, we use influence functions to efficiently approximate full CP. We prove that our method is a consistent approximation of full CP, and empirically show that the approximation error becomes smaller as the training set increases; e.g., for $10^{3}$ training points the two methods output p-values that are $<10^{-3}$ apart: a negligible error for any practical application. Our methods enable scaling full CP to large real-world datasets. We compare our full CP approximation (ACP) to mainstream CP alternatives, and observe that our method is computationally competitive whilst enjoying the statistical predictive power of full CP.