论文标题

Campana和Peternell的奇异指标和猜想

Singular metrics and a conjecture by Campana and Peternell

论文作者

Schnell, Christian

论文摘要

Campana和Peternell的一个猜想说,如果$ k_x $的正倍与有效的除数$ d $加上伪有效的除数,那么$ x $的kodaira尺寸至少应与$ d $ $ d $的IITAKA尺寸一样大。这是对非泛滥猜想的非常有用的概括(情况$ d = 0 $)。我们使用有关Pluri-Adhechaint捆绑包的奇异指标的最新工作,以表明Campana-Peternell的猜想几乎等同于非泛滥的猜想。

A conjecture by Campana and Peternell says that if a positive multiple of $K_X$ is linearly equivalent to an effective divisor $D$ plus a pseudo-effective divisor, then the Kodaira dimension of $X$ should be at least as big as the Iitaka dimension of $D$. This is a very useful generalization of the non-vanishing conjecture (which is the case $D = 0$). We use recent work about singular metrics on pluri-adjoint bundles to show that the Campana-Peternell conjecture is almost equivalent to the non-vanishing conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源